Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Brain Stroke Prediction using Machine Learning Techniques. A Comparative Study (eBook)

eBook Download: PDF | EPUB
2023 | 1. Auflage
72 Seiten
GRIN Verlag
978-3-346-94926-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
29,99 inkl. MwSt
(CHF 29,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Scientific Study from the year 2023 in the subject Computer Science - Bioinformatics, grade: 10, VIT University (VIT), course: Computer Science, language: English, abstract: The use of machine learning for stroke prediction represents a powerful tool in enhancing patient care and reducing stroke-related mortality and disability. By focusing on key risk factors and leveraging extensive healthcare data, machine learning can substantially improve the accuracy and effectiveness of stroke prediction. This project aims to harness the potential of machine learning to better identify individuals at high risk of suffering a stroke and provide them with early, targeted interventions, ultimately saving lives and improving patient outcomes. The importance of predicting strokes cannot be overstated. Strokes are a leading cause of mortality and disability worldwide. Early detection and prevention can have a substantial impact on patient outcomes. Leveraging machine learning algorithms for stroke prediction can significantly improve the accuracy and efficacy of identifying high-risk patients. The primary objective of this project is to develop a precise stroke prediction system that can recognize high-risk patients based on a wide range of risk factors, including age, gender, medical history, lifestyle choices, and genetic factors. By creating a reliable model for stroke prediction, healthcare professionals can administer early interventions, potentially reducing stroke incidence and improving patient outcomes. The project's scope includes analyzing electronic health record (EHR) data to identify the key elements essential for stroke prediction. EHRs contain valuable information, including patient demographics, medical history, clinical findings, and other factors relevant to constructing a stroke prediction model. Machine learning for stroke prediction involves several stages. Initially, a dataset of relevant variables potentially influencing stroke occurrence is identified. This dataset may encompass demographic details, clinical information, laboratory tests, medical images, genetic data, and lifestyle factors. Subsequently, the dataset is cleaned and preprocessed to remove noise and inconsistencies. A machine learning algorithm is chosen, and the data is divided into training and testing groups. The algorithm is trained using the training data to identify patterns and relationships between variables and stroke occurrence. Once the model is trained, it is evaluated using the testing data to assess its performance.

Balamurugan Rengeswaran received the B.E. degree in Computer Science and Engineering in 2010 from the Government College of Engineering, Salem and the M.E. degree in Computer Science and Engineering in 2012 from the Bannari Amman Institute of Technology, Sathyamangalam. He is completed his Ph.D in Information and Communication Engineering in 2016 from Anna University, Chennai. Currently he is working as an Associate Professor in Department of Computer Science and Engineering in Vellore Institute of Technology, Vellore. He has published more than 20 papers in various international journals and conferences. His areas of interest include data mining and meta-heuristic optimization techniques.
Erscheint lt. Verlag 5.10.2023
Verlagsort München
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Medizin / Pharmazie Allgemeines / Lexika
Schlagworte machine learning • Nueral Network • Stroke Prediction
ISBN-10 3-346-94926-5 / 3346949265
ISBN-13 978-3-346-94926-4 / 9783346949264
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)
Größe: 6,4 MB

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35
Der Weg zur professionellen Vektorgrafik

von Uwe Schöler

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30