Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Google Machine Learning and Generative AI for Solutions Architects - Kieran Kavanagh  O.C.D.

Google Machine Learning and Generative AI for Solutions Architects

​Build efficient and scalable AI/ML solutions on Google Cloud
Buch | Softcover
552 Seiten
2024
Packt Publishing Limited (Verlag)
978-1-80324-527-0 (ISBN)
CHF 66,30 inkl. MwSt
Architect and run real-world AI/ML solutions at scale on Google Cloud, and discover best practices to address common industry challenges effectively

Key Features

Understand key concepts, from fundamentals through to complex topics, via a methodical approach
Build real-world end-to-end MLOps solutions and generative AI applications on Google Cloud
Get your hands on a code repository with over 20 hands-on projects for all stages of the ML model development lifecycle
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionMost companies today are incorporating AI/ML into their businesses. Building and running apps utilizing AI/ML effectively is tough. This book, authored by a principal architect with about two decades of industry experience, who has led cross-functional teams to design, plan, implement, and govern enterprise cloud strategies, shows you exactly how to design and run AI/ML workloads successfully using years of experience from some of the world’s leading tech companies.
You’ll get a clear understanding of essential fundamental AI/ML concepts, before moving on to complex topics with the help of examples and hands-on activities. This will help you explore advanced, cutting-edge AI/ML applications that address real-world use cases in today’s market. You’ll recognize the common challenges that companies face when implementing AI/ML workloads, and discover industry-proven best practices to overcome these. The chapters also teach you about the vast AI/ML landscape on Google Cloud and how to implement all the steps needed in a typical AI/ML project. You’ll use services such as BigQuery to prepare data; Vertex AI to train, deploy, monitor, and scale models in production; as well as MLOps to automate the entire process.
By the end of this book, you will be able to unlock the full potential of Google Cloud's AI/ML offerings.What you will learn

Build solutions with open-source offerings on Google Cloud, such as TensorFlow, PyTorch, and Spark
Source, understand, and prepare data for ML workloads
Build, train, and deploy ML models on Google Cloud
Create an effective MLOps strategy and implement MLOps workloads on Google Cloud
Discover common challenges in typical AI/ML projects and get solutions from experts
Explore vector databases and their importance in Generative AI applications
Uncover new Gen AI patterns such as Retrieval Augmented Generation (RAG), agents, and agentic workflows

Who this book is forThis book is for aspiring solutions architects looking to design and implement AI/ML solutions on Google Cloud. Although this book is suitable for both beginners and experienced practitioners, basic knowledge of Python and ML concepts is required. The book focuses on how AI/ML is used in the real world on Google Cloud. It briefly covers the basics at the beginning to establish a baseline for you, but it does not go into depth on the underlying mathematical concepts that are readily available in academic material.

Kieran Kavanagh is a Principal Architect at Google Cloud, working with Google's largest retail customers and driving some of the industry's most challenging digital transformation and generative AI initiatives. Before joining Google, he was a Principal AI/ML Solutions Architect in Strategic Accounts at Amazon Web Services (AWS), building some of the most complex AI/ML systems in the world. He was also a Principal Architect at AT&T, leading their Mobile Internet infrastructure design, and he is a public speaker on the topics of AI/ML, MLOps, and large-scale cloud transformation. Originally from Cork, Ireland, he now lives in Atlanta, GA, with his wife, Katelyn.

Table of Contents

AI/ML Concepts, Real-World Applications, and Challenges
Understanding the ML Model Development Lifecycle
AI/ML Tooling and the Google Cloud AI/ML Landscape
Utilizing Google Cloud's High-Level AI Services
Building Custom ML Models on Google Cloud
Diving Deeper—Preparing and Processing Data for AI/ML Workloads on Google Cloud
Feature Engineering and Dimensionality Reduction
Hyperparameters and Optimization
Neural Networks and Deep Learning
Deploying, Monitoring, and Scaling in Production
Machine Learning Engineering and MLOps with GCP
Bias, Explainability, Fairness, and Lineage
ML Governance and the Google Cloud Architecture Framework
Advanced Use Cases and Technologies
An Introduction to Generative AI
Generative AI on Google Cloud
Advanced Generative AI Concepts and Use Cases
Bringing It All Together—Building ML Solutions with GCP and Vertex

Erscheinungsdatum
Vorwort Priyanka Vergadia
Verlagsort Birmingham
Sprache englisch
Maße 191 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80324-527-1 / 1803245271
ISBN-13 978-1-80324-527-0 / 9781803245270
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Mit traditionellen, aktuellen und zukünftigen Erfolgsfaktoren

von Michael Lewrick; Patrick Link; Larry Leifer

Buch | Softcover (2018)
Franz Vahlen (Verlag)
CHF 41,70
Aus- und Weiterbildung nach iSAQB-Standard zum Certified Professional …

von Mahbouba Gharbi; Arne Koschel; Andreas Rausch; Gernot Starke

Buch | Hardcover (2023)
dpunkt Verlag
CHF 48,85
Wissensverarbeitung - Neuronale Netze

von Uwe Lämmel; Jürgen Cleve

Buch | Hardcover (2023)
Carl Hanser (Verlag)
CHF 48,95