Limit Theorems for Some Long Range Random Walks on Torsion Free Nilpotent Groups
Springer International Publishing (Verlag)
978-3-031-43331-3 (ISBN)
Zhen-Qing Chen is a Professor of Mathematics at the University of Washington, Seattle, Washington, USA
Takashi Kumagai is a Professor of Mathematics at Waseda University, Tokyo, Japan.
Laurent Saloff-Coste is the Abram R. Bullis Professor of Mathematics at Cornell University, Ithaca, New York, USA.
Jian Wang is a Professor of Mathematics at Fujian Normal University, Fuzhou, Fujian Province, P.R. China
Tianyi Zheng is a Professor of Mathematics at the University of California, San Diego, California, USA
Setting the stage.- Introduction.- Polynomial coordinates and approximate dilations.- Vague convergence and change of group law.- Weak convergence of the processes.- Local limit theorem.- Symmetric Lévy processes on nilpotent groups.- Measures in SM( ) and their geometries.- Adapted approximate group dilations.- The main results for random walks driven by measures in SM( ).
Erscheinungsdatum | 26.10.2023 |
---|---|
Reihe/Serie | SpringerBriefs in Mathematics |
Zusatzinfo | XIII, 139 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 248 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Schlagworte | Dirichlet form • Group dilation • Lévy process • Local Limit Theorem • Long range random walk • nilpotent group • weak convergence |
ISBN-10 | 3-031-43331-9 / 3031433319 |
ISBN-13 | 978-3-031-43331-3 / 9783031433313 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich