Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Pretrain Vision and Large Language Models in Python (eBook)

End-to-end techniques for building and deploying foundation models on AWS

(Autor)

eBook Download: EPUB
2023
258 Seiten
Packt Publishing (Verlag)
978-1-80461-254-5 (ISBN)

Lese- und Medienproben

Pretrain Vision and Large Language Models in Python - Emily Webber
Systemvoraussetzungen
35,99 inkl. MwSt
(CHF 35,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examples


Key Features


Learn to develop, train, tune, and apply foundation models with optimized end-to-end pipelines


Explore large-scale distributed training for models and datasets with AWS and SageMaker examples


Evaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoring


Book Description


Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization.


With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you'll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models.


You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines.


By the end of this book, you'll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future.


What you will learn


Find the right use cases and datasets for pretraining and fine-tuning


Prepare for large-scale training with custom accelerators and GPUs


Configure environments on AWS and SageMaker to maximize performance


Select hyperparameters based on your model and constraints


Distribute your model and dataset using many types of parallelism


Avoid pitfalls with job restarts, intermittent health checks, and more


Evaluate your model with quantitative and qualitative insights


Deploy your models with runtime improvements and monitoring pipelines


Who this book is for


If you're a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way.


Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examplesKey FeaturesLearn to develop, train, tune, and apply foundation models with optimized end-to-end pipelinesExplore large-scale distributed training for models and datasets with AWS and SageMaker examplesEvaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoringBook DescriptionFoundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization. With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you'll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models. You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines. By the end of this book, you'll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future.What you will learnFind the right use cases and datasets for pretraining and fine-tuningPrepare for large-scale training with custom accelerators and GPUsConfigure environments on AWS and SageMaker to maximize performanceSelect hyperparameters based on your model and constraintsDistribute your model and dataset using many types of parallelismAvoid pitfalls with job restarts, intermittent health checks, and moreEvaluate your model with quantitative and qualitative insightsDeploy your models with runtime improvements and monitoring pipelinesWho this book is forIf you're a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way.]]>
Erscheint lt. Verlag 31.5.2023
Vorwort Andrea Olgiati
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80461-254-5 / 1804612545
ISBN-13 978-1-80461-254-5 / 9781804612545
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 18,25