Algorithmic Learning Theory
Springer Berlin (Verlag)
978-3-540-23356-5 (ISBN)
Invited Papers.- String Pattern Discovery.- Applications of Regularized Least Squares to Classification Problems.- Probabilistic Inductive Logic Programming.- Hidden Markov Modelling Techniques for Haplotype Analysis.- Learning, Logic, and Probability: A Unified View.- Regular Contributions.- Learning Languages from Positive Data and Negative Counterexamples.- Inductive Inference of Term Rewriting Systems from Positive Data.- On the Data Consumption Benefits of Accepting Increased Uncertainty.- Comparison of Query Learning and Gold-Style Learning in Dependence of the Hypothesis Space.- Learning r-of-k Functions by Boosting.- Boosting Based on Divide and Merge.- Learning Boolean Functions in AC 0 on Attribute and Classification Noise.- Decision Trees: More Theoretical Justification for Practical Algorithms.- Application of Classical Nonparametric Predictors to Learning Conditionally I.I.D. Data.- Complexity of Pattern Classes and Lipschitz Property.- On Kernels, Margins, and Low-Dimensional Mappings.- Estimation of the Data Region Using Extreme-Value Distributions.- Maximum Entropy Principle in Non-ordered Setting.- Universal Convergence of Semimeasures on Individual Random Sequences.- A Criterion for the Existence of Predictive Complexity for Binary Games.- Full Information Game with Gains and Losses.- Prediction with Expert Advice by Following the Perturbed Leader for General Weights.- On the Convergence Speed of MDL Predictions for Bernoulli Sequences.- Relative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm.- On the Complexity of Working Set Selection.- Convergence of a Generalized Gradient Selection Approach for the Decomposition Method.- Newton Diagram and Stochastic Complexity in Mixture of Binomial Distributions.- Learnability of Relatively Quantified Generalized Formulas.- Learning Languages Generated by Elementary Formal Systems and Its Application to SH Languages.- New Revision Algorithms.- The Subsumption Lattice and Query Learning.- Learning of Ordered Tree Languages with Height-Bounded Variables Using Queries.- Learning Tree Languages from Positive Examples and Membership Queries.- Learning Content Sequencing in an Educational Environment According to Student Needs.- Tutorial Papers.- Statistical Learning in Digital Wireless Communications.- A BP-Based Algorithm for Performing Bayesian Inference in Large Perceptron-Type Networks.- Approximate Inference in Probabilistic Models.
Erscheint lt. Verlag | 23.9.2004 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XIV, 514 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 778 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmen • Algorithmic Learning • Algorithmic Learning Theory • algorithms • Boosting • Computational Learning • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Heuristics • Inductive Inference • Inductive Logic Programming • learning • Learning Algorithms • Learning theory • Logic • machine learning • Neural Network Learning • Optimization • Reinforcement Learning • Statistical Learning • supervised learning • Support Vector Machine |
ISBN-10 | 3-540-23356-3 / 3540233563 |
ISBN-13 | 978-3-540-23356-5 / 9783540233565 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich