Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Evolutionary Computation in Data Mining

Ashish Ghosh (Herausgeber)

Buch | Hardcover
XVIII, 266 Seiten
2004 | 2005
Springer Berlin (Verlag)
978-3-540-22370-2 (ISBN)

Lese- und Medienproben

Evolutionary Computation in Data Mining -
CHF 224,65 inkl. MwSt
Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).

Evolutionary Algorithms for Data Mining and Knowledge Discovery.- Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining.- GAP: Constructing and Selecting Features with Evolutionary Computing.- Multi-Agent Data Mining using Evolutionary Computing.- A Rule Extraction System with Class-Dependent Features.- Knowledge Discovery in Data Mining via an Evolutionary Algorithm.- Diversity and Neuro-Ensemble.- Unsupervised Niche Clustering: Discovering an Unknown Number of Clusters in Noisy Data Sets.- Evolutionary Computation in Intelligent Network Management.- Genetic Programming in Data Mining for Drug Discovery.- Microarray Data Mining with Evolutionary Computation.- An Evolutionary Modularized Data Mining Mechanism for Financial Distress Forecasts.

Erscheint lt. Verlag 18.10.2004
Reihe/Serie Studies in Fuzziness and Soft Computing
Zusatzinfo XVIII, 266 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 556 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte algorithm • algorithms • Bioinformatics • COND041 • Databases • Data Mining • evolutionary algorithm • evolutionary computation • genetic programming • Hardcover, Softcover / Technik/Allgemeines, Lexika • HC/Informatik, EDV/Informatik • HC/Technik/Allgemeines, Lexika • Knowledge Discovery • Knowledge Discovery in Databases • Multi-Agent Data mining • programming
ISBN-10 3-540-22370-3 / 3540223703
ISBN-13 978-3-540-22370-2 / 9783540223702
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20