Evolutionary Computation in Data Mining
Springer Berlin (Verlag)
978-3-642-42195-2 (ISBN)
Evolutionary Algorithms for Data Mining and Knowledge Discovery.- Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining.- GAP: Constructing and Selecting Features with Evolutionary Computing.- Multi-Agent Data Mining using Evolutionary Computing.- A Rule Extraction System with Class-Dependent Features.- Knowledge Discovery in Data Mining via an Evolutionary Algorithm.- Diversity and Neuro-Ensemble.- Unsupervised Niche Clustering: Discovering an Unknown Number of Clusters in Noisy Data Sets.- Evolutionary Computation in Intelligent Network Management.- Genetic Programming in Data Mining for Drug Discovery.- Microarray Data Mining with Evolutionary Computation.- An Evolutionary Modularized Data Mining Mechanism for Financial Distress Forecasts.
Erscheint lt. Verlag | 15.11.2014 |
---|---|
Reihe/Serie | Studies in Fuzziness and Soft Computing |
Zusatzinfo | XVIII, 266 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 444 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | algorithm • algorithms • Bioinformatics • Databases • Data Mining • evolutionary algorithm • evolutionary computation • genetic programming • Knowledge Discovery • Knowledge Discovery in Databases • Multi-Agent Data mining • programming |
ISBN-10 | 3-642-42195-4 / 3642421954 |
ISBN-13 | 978-3-642-42195-2 / 9783642421952 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich