On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety
Princeton University Press (Verlag)
978-0-691-12044-7 (ISBN)
The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.
Mark Green is Professor of Mathematics and Director of the Institute for Pure and Applied Mathematics at the University of California, Los Angeles. Phillip Griffiths is Professor in the School of Mathematics at the Institute of Advanced Study.
*Frontmatter, pg. i*Contents, pg. v*Abstract, pg. 1*Chapter One. Introduction, pg. 3*Chapter Two. The Classical Case When n = 1, pg. 22*Chapter Three. Differential Geometry of Symmetric Products, pg. 31*Chapter Four. Absolute Differentials (I), pg. 42*Chapter Five Geometric Description of T Zn(X), pg. 54*Chapter Six. Absolute Differentials (II), pg. 61*Chapter Seven. The Ext-definition of TZ2(X) for X an Algebraic Surface, pg. 84*Chapter Eight. Tangents to Related Spaces, pg. 100*Chapter Nine. Applications and Examples, pg. 150*Chapter Ten. Speculations and Questions, pg. 186*Bibliography, pg. 195*Index, pg. 199
Erscheint lt. Verlag | 9.1.2005 |
---|---|
Reihe/Serie | Annals of Mathematics Studies |
Zusatzinfo | 10 line illus. |
Verlagsort | New Jersey |
Sprache | englisch |
Maße | 152 x 235 mm |
Gewicht | 28 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 0-691-12044-7 / 0691120447 |
ISBN-13 | 978-0-691-12044-7 / 9780691120447 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich