Outlier Detection for Temporal Data
Springer International Publishing (Verlag)
978-3-031-00777-4 (ISBN)
Manish Gupta is an applied researcher at Microsoft Bing, India. He is also an adjunct faculty at the International Institute of Information Technology, Hyderabad (IIIT-H), India. He received his Masters in Computer Science from IIT Bombay in 2007 and his Ph.D. in Computer Science from University of Illinois at Urbana Champaign in 2013. He worked for Yahoo! Bangalore from 2007 to 2009. His research interests are in the areas of data mining, information retrieval, and web mining. Jing Gao received her Ph.D. from University of Illinois at Urbana Champaign in 2011. She is currently an assistant professor in the Computer Science and Engineering Department of the State University of New York at Buffalo. She was a recipient of an IBM Ph.D. fellowship and is broadly interested in data and information analysis with a focus on information integration, ensemble methods, transfer learning, anomaly detection, and mining data streams. She is a member of the IEEE. Charu C. Aggarwal is a Research Scientist at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his Ph.D. from Massachusetts Institute of Technology in 1996. He has since worked in the field of performance analysis, databases, and data mining. He has published over 200 papers in refereed conferences and journals, and has applied for, or been granted, over 80 patents. He has received the IBM Corporate Award (2003), IBM Outstanding Innovation Award (2008), IBM Research Division Award (2008), and Master Inventor at IBM three times. He is a fellow of the ACM and IEEE. Jiawei Han is the Abel Bliss Professor of Computer Science at the University of Illinois at Urbana-Champaign. His research includes data mining, information network analysis, database systems, and data warehousing, with over 600 journal and conference publications. He has chaired or served on many program committees of international conferences, including PC co-chair for KDD, SDM, and ICDM conferences, and Americas Coordinator for VLDB conferences. He also served as the founding Editor-In-Chief of ACM Transactions on Knowledge Discovery from Data and is serving as the Director of Information Network Academic Research Center supported by U.S. Army Research Lab. He is Fellow of ACM and Fellow of IEEE, and received 2004 ACM SIGKDD Innovations Award, 2005 IEEE Computer Society Technical Achievement Award, 2009 IEEE Computer Society Wallace McDowell Award, and 2011 Daniel C. Drucker Eminent Faculty Award at UIUC. His book, Data Mining: Concepts and Techniques, has been used popularly as a textbook worldwide.
Preface.- Acknowledgments.- Figure Credits.- Introduction and Challenges.- Outlier Detection for Time Series and Data Sequences.- Outlier Detection for Data Streams.- Outlier Detection for Distributed Data Streams.- Outlier Detection for Spatio-Temporal Data.- Outlier Detection for Temporal Network Data.- Applications of Outlier Detection for Temporal Data.- Conclusions and Research Directions.- Bibliography.- Authors' Biographies .
Erscheinungsdatum | 06.06.2022 |
---|---|
Reihe/Serie | Synthesis Lectures on Data Mining and Knowledge Discovery |
Zusatzinfo | XVIII, 110 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 191 x 235 mm |
Gewicht | 264 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik | |
ISBN-10 | 3-031-00777-8 / 3031007778 |
ISBN-13 | 978-3-031-00777-4 / 9783031007774 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich