Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Community detection and mining in social media - Lei Tang, Huan Liu

Community detection and mining in social media

, (Autoren)

Buch | Softcover
XIV, 123 Seiten
2010
Springer International Publishing (Verlag)
978-3-031-00772-9 (ISBN)
CHF 41,90 inkl. MwSt
The past decade has witnessed the emergence of participatory Web and social media, bringing people together in many creative ways. Millions of users are playing, tagging, working, and socializing online, demonstrating new forms of collaboration, communication, and intelligence that were hardly imaginable just a short time ago. Social media also helps reshape business models, sway opinions and emotions, and opens up numerous possibilities to study human interaction and collective behavior in an unparalleled scale. This lecture, from a data mining perspective, introduces characteristics of social media, reviews representative tasks of computing with social media, and illustrates associated challenges. It introduces basic concepts, presents state-of-the-art algorithms with easy-to-understand examples, and recommends effective evaluation methods. In particular, we discuss graph-based community detection techniques and many important extensions that handle dynamic, heterogeneous networks in social media. We also demonstrate how discovered patterns of communities can be used for social media mining. The concepts, algorithms, and methods presented in this lecture can help harness the power of social media and support building socially-intelligent systems. This book is an accessible introduction to the study of emph{community detection and mining in social media}. It is an essential reading for students, researchers, and practitioners in disciplines and applications where social media is a key source of data that piques our curiosity to understand, manage, innovate, and excel.This book is supported by additional materials, including lecture slides, the complete set of figures, key references, some toy data sets used in the book, and the source code of representative algorithms. The readers are encouraged to visit the book website for the latest information.Table of Contents: Social Media and Social Computing / Nodes, Ties, and Influence / Community Detection and Evaluation / Communities in Heterogeneous Networks / Social Media Mining

Lei Tang is a scientist at Yahoo! Labs. He received his Ph.D. in computer science and engineering at Arizona State University in 2010 and BS from Fudan University, China in 2004. His research interests include social computing, data mining, and social media mining, in particular, relational learning with heterogeneous networks, group evolution, profiling and influence modeling, and collective behavior modeling and prediction in social media. He was awarded ASU GPSA Research Grant, SDM Doctoral Student Forum Fellowship, Student Travel Awards and Scholarships in various conferences. He is a member of ACM and IEEE. Lei Tang is a scientist at Yahoo! Labs. He received his Ph.D. in computer science and engineering at Arizona State University in 2010 and BS from Fudan University, China in 2004. His research interests include social computing, data mining, and social media mining, in particular, relational learning with heterogeneous networks, group evolution, profiling and influence modeling, and collective behavior modeling and prediction in social media. He was awarded ASU GPSA Research Grant, SDM Doctoral Student Forum Fellowship, Student Travel Awards and Scholarships in various conferences. He is a member of ACM and IEEE.

Social Media and Social Computing.- Nodes, Ties, and Influence.- Community Detection and Evaluation.- Communities in Heterogeneous Networks.- Social Media Mining.

Erscheinungsdatum
Reihe/Serie Synthesis Lectures on Data Mining and Knowledge Discovery
Zusatzinfo XIV, 123 p.
Verlagsort Cham
Sprache englisch
Maße 191 x 235 mm
Gewicht 294 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
ISBN-10 3-031-00772-7 / 3031007727
ISBN-13 978-3-031-00772-9 / 9783031007729
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85