Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Vision-Based Human Activity Recognition - Zhongxu Hu, Chen Lv

Vision-Based Human Activity Recognition (eBook)

, (Autoren)

eBook Download: PDF
2022 | 1st ed. 2022
X, 121 Seiten
Springer Nature Singapore (Verlag)
978-981-19-2290-9 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book offers a systematic, comprehensive, and timely review on V-HAR, and it covers the related tasks,  cutting-edge technologies, and applications of V-HAR, especially the deep learning-based approaches. The field of Human Activity Recognition (HAR) has become one of the trendiest research topics due to the availability of various sensors, live streaming of data and the advancement in computer vision, machine learning, etc. HAR can be extensively used in many scenarios, for example, medical diagnosis, video surveillance, public governance, also in human-machine interaction applications. In HAR, various human activities such as walking, running, sitting, sleeping, standing, showering, cooking, driving, abnormal activities, etc., are recognized. The data can be collected from wearable sensors or accelerometer or through video frames or images; among all the sensors, vision-based sensors are now the most widely used sensors due to their low-cost, high-quality, and unintrusive characteristics. Therefore, vision-based human activity recognition (V-HAR) is the most important and commonly used category among all HAR technologies.

The addressed topics include hand gestures, head pose, body activity, eye gaze, attention modeling, etc. The latest advancements and the commonly used benchmark are given. Furthermore, this book also discusses the future directions and recommendations for the new researchers.



Zhongxu Hu is currently a research fellow within the Department of Mechanical and Aerospace Engineering of Nanyang Technological University in Singapore. His current research interests include human-machine interaction, computer vision, and deep learning applied to human behavior analysis and autonomous vehicles in multiple scenarios. He has contributed more than 20 papers in high-level international journals.
Dr. Hu serves as a lead guest editor for Computational Intelligence and Neuroscience and an academic editor/Editorial Board for Automotive Innovation, Journal of Electrical and Electronic Engineering, and is also an active reviewer for IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Industrial Electronics, IEEE Intelligent Transportation Systems Magazine, Journal of Intelligent Manufacturing, and Journal of Advanced Transportation et al.
 
Chen Lv is currently an assistant professor at Nanyang Technology University, Singapore. His research focuses on advanced vehicle and human-machine systems, where he has contributed 2 books, 2 chapters, and over 100 papers and obtained 12 granted patents and 1 technology disclosure.
Dr. Lv serves as academic editor/editorial board member for IEEE Transactions on Intelligent Transportation Systems, SAE International Journal of Electrified Vehicles, International Journal of Vehicle Autonomous Systems, Automotive Innovation, etc., and guest editor for IEEE/ASME Transactions on Mechatronics, IEEE Transactions on Industrial Informatics, IEEE Intelligent Transportation Systems Magazine, Applied Energy, IEEE Sensors Journal, etc. He received many awards and honors, selectively including the Highly Commended Paper Award of IMechE UK in 2012, Japan NSK Outstanding Mechanical Engineering Paper Award in 2014, China SAE Outstanding Paper Award in 2015, the 1st Class Award of Automotive Industry Scientific and Technological Invention in 2015, Tsinghua University Outstanding Doctoral Thesis Award in 2016, Seal of Excellence of EU H2020 Marie Sklodowska-Curie Actions in 2017, Best Workshop/Special Session Paper Award of IEEE Intelligent Vehicle Symposium in 2018, Automotive Innovation Best Paper Award in 2020, and the winner of INTERPRET Challenge of NeurIPS 2020 competition.

This book offers a systematic, comprehensive, and timely review on V-HAR, and it covers the related tasks,  cutting-edge technologies, and applications of V-HAR, especially the deep learning-based approaches. The field of Human Activity Recognition (HAR) has become one of the trendiest research topics due to the availability of various sensors, live streaming of data and the advancement in computer vision, machine learning, etc. HAR can be extensively used in many scenarios, for example, medical diagnosis, video surveillance, public governance, also in human-machine interaction applications. In HAR, various human activities such as walking, running, sitting, sleeping, standing, showering, cooking, driving, abnormal activities, etc., are recognized. The data can be collected from wearable sensors or accelerometer or through video frames or images; among all the sensors, vision-based sensors are now the most widely used sensors due to their low-cost, high-quality, and unintrusivecharacteristics. Therefore, vision-based human activity recognition (V-HAR) is the most important and commonly used category among all HAR technologies.The addressed topics include hand gestures, head pose, body activity, eye gaze, attention modeling, etc. The latest advancements and the commonly used benchmark are given. Furthermore, this book also discusses the future directions and recommendations for the new researchers.
Erscheint lt. Verlag 22.4.2022
Reihe/Serie SpringerBriefs in Intelligent Systems
SpringerBriefs in Intelligent Systems
Zusatzinfo X, 121 p. 60 illus., 57 illus. in color.
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Eye Gaze Estimation • hand gesture recognition • Hand Pose Estimation • head pose estimation • Human Activity Recognition • Human Attention Estimation • Human Body Pose Estimation • Human-Machine Interaction
ISBN-10 981-19-2290-X / 981192290X
ISBN-13 978-981-19-2290-9 / 9789811922909
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 49,20
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65