Nicht aus der Schweiz? Besuchen Sie lehmanns.de
MCMC from Scratch - Masanori Hanada, So Matsuura

MCMC from Scratch

A Practical Introduction to Markov Chain Monte Carlo
Buch | Hardcover
194 Seiten
2022 | 1st ed. 2022
Springer Verlag, Singapore
978-981-19-2714-0 (ISBN)
CHF 89,85 inkl. MwSt
This textbook explains the fundamentals of Markov Chain Monte Carlo (MCMC) without assuming advanced knowledge of mathematics and programming. 2, which introduces readers to the Monte Carlo algorithm and highlights the advantages of MCMC, Chap.
This textbook explains the fundamentals of Markov Chain Monte Carlo (MCMC)  without assuming advanced knowledge of mathematics and programming. MCMC is  a powerful technique that can be used to integrate complicated functions or to handle  complicated probability distributions. MCMC is frequently used in diverse fields where  statistical methods are important – e.g. Bayesian statistics, quantum physics, machine  learning, computer science, computational biology, and mathematical economics. This  book aims to equip readers with a sound understanding of MCMC and enable them  to write simulation codes by themselves. 



The content consists of six chapters. Following Chap. 2, which introduces readers to the Monte Carlo algorithm and highlights the advantages of MCMC, Chap. 3 presents  the general aspects of MCMC. Chap. 4 illustrates the essence of MCMC through  the simple example of the Metropolis algorithm. In turn, Chap. 5explains the HMC  algorithm, Gibbs sampling algorithm and Metropolis-Hastings algorithm, discussing  their pros, cons and pitfalls. Lastly, Chap. 6 presents several applications of MCMC.  Including a wealth of examples and exercises with solutions, as well as sample codes  and further math topics in the Appendix, this book offers a valuable asset for students  and beginners in various fields. 

Masanori Hanada is a theoretical physicist at the School of Mathematical Sciences, Queen Mary University of London. His research interests include strongly coupled quantum systems, quantum field theory, and superstring theory. He and his collaborators pioneered the application of Markov Chain Monte Carlo methods for superstring theory. So Matsuura is a theoretical physicist at Research and Education Center for Natural Sciences, Keio University. His research interests include superstring theory and nonperturbative lattice formulation of supersymmetry quantum field theory. In addition to physics research, he has a strong passion for public outreach activities and delivers many public lectures.

Chapter 1: Introduction.- Chapter 2: What is the Monte Carlo method?.- Chapter 3: General Aspects of Markov Chain Monte Carlo.- Chapter 4: Metropolis Algorithm.- Chapter 5: Other Useful Algorithms.- Chapter 6: Applications of Markov Chain Monte Carlo.

Erscheinungsdatum
Zusatzinfo 24 Illustrations, color; 45 Illustrations, black and white; IX, 194 p. 69 illus., 24 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 981-19-2714-6 / 9811927146
ISBN-13 978-981-19-2714-0 / 9789811927140
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15