Applied Deep Learning with TensorFlow 2 (eBook)
XXVIII, 380 Seiten
Apress (Verlag)
978-1-4842-8020-1 (ISBN)
Understand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your research projects.
This book is designed so that you can focus on the parts you are interested in. You will explore topics as regularization, optimizers, optimization, metric analysis, and hyper-parameter tuning. In addition, you will learn the fundamentals ideas behind autoencoders and generative adversarial networks.
All the code presented in the book will be available in the form of Jupyter notebooks which would allow you to try out all examples and extend them in interesting ways. A companion online book is available with the complete code for all examples discussed in the book and additional material more related to TensorFlow and Keras. All the code will be available in Jupyter notebook format and can be opened directly in Google Colab (no need to install anything locally) or downloaded on your own machine and tested locally.
You will:
•Understand the fundamental concepts of how neural networks work
•Learn the fundamental ideas behind autoencoders and generative adversarial networks•Be able to try all the examples with complete code examples that you can expand for your own projects
•Have available a complete online companion book with examples and tutorials.
This book is for:
Readers with an intermediate understanding of machine learning, linear algebra, calculus, and basic Python programming.
Understand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your research projects.This book is designed so that you can focus on the parts you are interested in. You will explore topics as regularization, optimizers, optimization, metric analysis, and hyper-parameter tuning. In addition, you will learn the fundamentals ideas behind autoencoders and generative adversarial networks.All the code presented in the book will be available in the form of Jupyter notebooks which would allow you to try out all examples and extend them in interesting ways. A companion online book is available with the complete code for all examples discussed in the book and additional material more related to TensorFlow and Keras. All the code will be available in Jupyter notebook format and can be openeddirectly in Google Colab (no need to install anything locally) or downloaded on your own machine and tested locally.You will: * Understand the fundamental concepts of how neural networks work* Learn the fundamental ideas behind autoencoders and generative adversarial networks* Be able to try all the examples with complete code examples that you can expand for your own projects* Have available a complete online companion book with examples and tutorials.This book is for:Readers with an intermediate understanding of machine learning, linear algebra, calculus, and basic Python programming.
Erscheint lt. Verlag | 28.3.2022 |
---|---|
Zusatzinfo | XXVIII, 380 p. 148 illus., 31 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | convolutional neural networks • Deep learning • Dropout • Neuron Activation Functions • Python • Recursive Neural Networks • Regularization • Skilearn • TensorFlow 2.0 |
ISBN-10 | 1-4842-8020-2 / 1484280202 |
ISBN-13 | 978-1-4842-8020-1 / 9781484280201 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich