Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning for Networking -

Machine Learning for Networking

4th International Conference, MLN 2021, Virtual Event, December 1–3, 2021, Proceedings
Buch | Softcover
X, 161 Seiten
2022 | 1st ed. 2022
Springer International Publishing (Verlag)
978-3-030-98977-4 (ISBN)
CHF 82,35 inkl. MwSt
This book constitutes the thoroughly refereed proceedings of the 4th International Conference on Machine Learning for Networking, MLN 2021, held in Paris, France, in December 2021. The 10 revised full papers included in the volume were carefully reviewed and selected from 30 submissions. They present and discuss new trends in in deep and reinforcement learning, pattern recognition and classification for networks, machine learning for network slicing optimization, 5G systems, user behavior prediction, multimedia, IoT, security and protection, optimization and new innovative machine learning methods, performance analysis of machine learning algorithms, experimental evaluations of machine learning, data mining in heterogeneous networks, distributed and decentralized machine learning algorithms, intelligent cloud-support communications, resource allocation, energy-aware communications, software-defined networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, and underwater sensor networks.

Evaluation of Machine Learning Methods for Image Classification: A Case Study of Facility Surface Damage.- One-Dimensional Convolutional Neural Network for Detection and Mitigation of DDoS Attacks in SDN.- Multi-Armed Bandit-based Channel Hopping: Implementation on Embedded Devices.- Cross Inference of Throughput Profiles Using Micro Kernel Network Method.- Machine Learning Models for Malicious Traffic Detection in IoT networks /IoT-23 dataset.- Application and Mitigation of the Evasion Attack against a Deep Learning Based IDS for Io.- DynamicDeepFlow: An Approach for Identifying Changes in Network Traffic Flow Using Unsupervised Clustering.- Unsupervised Anomaly Detection using a new Knowledge Graph Model for Network Activity and Events.- Deep Reinforcement Learning for Cost-Effective Controller Placement in Software-Defined Multihop Wireless Networking.- Distance estimation using LORA and neural networks.


Erscheinungsdatum
Reihe/Serie Lecture Notes in Computer Science
Zusatzinfo X, 161 p. 69 illus., 50 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 272 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Applications • Artificial Intelligence • Communication Systems • computer crime • Computer Networks • Computer Science • Computer Security • Computer systems • conference proceedings • Data Security • Informatics • Intrusion Detection • machine learning • network architecture • Network Protocols • Research • Signal Processing • Software engineering • Telecommunication networks • Telecommunication Systems • telecommunication traffic • wireless telecommunication systems
ISBN-10 3-030-98977-1 / 3030989771
ISBN-13 978-3-030-98977-4 / 9783030989774
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85