Machine Learning for Networking
Springer International Publishing (Verlag)
978-3-030-98977-4 (ISBN)
Evaluation of Machine Learning Methods for Image Classification: A Case Study of Facility Surface Damage.- One-Dimensional Convolutional Neural Network for Detection and Mitigation of DDoS Attacks in SDN.- Multi-Armed Bandit-based Channel Hopping: Implementation on Embedded Devices.- Cross Inference of Throughput Profiles Using Micro Kernel Network Method.- Machine Learning Models for Malicious Traffic Detection in IoT networks /IoT-23 dataset.- Application and Mitigation of the Evasion Attack against a Deep Learning Based IDS for Io.- DynamicDeepFlow: An Approach for Identifying Changes in Network Traffic Flow Using Unsupervised Clustering.- Unsupervised Anomaly Detection using a new Knowledge Graph Model for Network Activity and Events.- Deep Reinforcement Learning for Cost-Effective Controller Placement in Software-Defined Multihop Wireless Networking.- Distance estimation using LORA and neural networks.
Erscheinungsdatum | 24.03.2022 |
---|---|
Reihe/Serie | Lecture Notes in Computer Science |
Zusatzinfo | X, 161 p. 69 illus., 50 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 272 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Applications • Artificial Intelligence • Communication Systems • computer crime • Computer Networks • Computer Science • Computer Security • Computer systems • conference proceedings • Data Security • Informatics • Intrusion Detection • machine learning • network architecture • Network Protocols • Research • Signal Processing • Software engineering • Telecommunication networks • Telecommunication Systems • telecommunication traffic • wireless telecommunication systems |
ISBN-10 | 3-030-98977-1 / 3030989771 |
ISBN-13 | 978-3-030-98977-4 / 9783030989774 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich