Data Science mit AWS
O'Reilly (Verlag)
978-3-96009-184-4 (ISBN)
- Der US-Besteller zu Amazon Web Services jetzt auf Deutsch
- Beschreibt alle wichtigen Konzepte und die wichtigsten AWS-Dienste mit vielen Beispielen aus der Praxis
- Deckt den kompletten End-to-End-Prozess von der Entwicklung der Modelle bis zum ihrem konkreten Einsatz ab
- Mit Best Practices für alle Aspekte der Modellerstellung einschließlich Training, Deployment, Sicherheit und MLOps
Mit diesem Buch lernen Machine-Learning- und KI-Praktiker, wie sie erfolgreich Data-Science-Projekte mit Amazon Web Services erstellen und in den produktiven Einsatz bringen. Es bietet einen detaillierten Einblick in den KI- und Machine-Learning-Stack von Amazon, der Data Science, Data Engineering und Anwendungsentwicklung vereint.
Chris Fregly und Antje Barth beschreiben verständlich und umfassend, wie Sie das breite Spektrum an AWS-Tools nutzbringend für Ihre ML-Projekte einsetzen.
Der praxisorientierte Leitfaden zeigt Ihnen konkret, wie Sie ML-Pipelines in der Cloud erstellen und die Ergebnisse dann innerhalb von Minuten in Anwendungen integrieren. Sie erfahren, wie Sie alle Teilschritte eines Workflows zu einer wiederverwendbaren MLOps-Pipeline bündeln, und Sie lernen zahlreiche reale Use Cases zum Beispiel aus den Bereichen Natural Language Processing, Computer Vision oder Betrugserkennung kennen.
Im gesamten Buch wird zudem erläutert, wie Sie Kosten senken und die Performance Ihrer Anwendungen optimieren können.
- Wenden Sie den KI- und ML-Stack von Amazon auf reale Use Cases an, insbesondere aus den Bereichen Natural Language Processing, Computer Vision, Betrugserkennung oder dialogfähige Geräte
- Nutzen Sie AutoML, um sich wiederholende Aufgaben mit Amazon SageMaker Autopilot zu automatisieren
- Tauchen Sie tief in den kompletten Lebenszyklus einer NLP-Modellentwicklung auf BERT-Basis ein und lernen Sie dabei, wie Sie Daten einlesen und analysieren sowie Modelle trainieren und deployen
- Bündeln Sie alle Teilschritte eines Workflows zu einer wiederverwendbaren MLOps-Pipeline
- Verwenden Sie Amazon Kinesis und Amazon Managed Streaming for Apache Kafka für Echtzeit-ML, Anomalieerkennung und Streaming-Analysen
- Profitieren Sie von bewährten Sicherheitspraktiken für das Identitäts- und Zugriffsmanagement, die Authentifizierung und Autorisierung
Chris Fregly ist Principal Developer Advocate für KI und Machine Learning bei AWS in San Francisco. Er spricht regelmäßig auf Konferenzen auf der ganzen Welt zu KI und Machine Learning, unter anderem bei der O'Reilly AI Superstream Series. Zuvor hat er PipelineAI gegründet, war Solutions Engineer bei Databricks und Software Engineer bei Netflix. In den letzten zehn Jahren hat er sich auf den Aufbau von KI- und Machine-Learning-Pipelines mit AWS konzentriert.
Antje Barth ist Senior Developer Advocate für KI und Machine Learning bei AWS in Düsseldorf. Sie ist Mitbegründerin der Düsseldorfer Gruppe von „Women in Big Data“ und spricht häufig auf KI- und Machine Learning-Konferenzen und Meetups auf der ganzen Welt. Außerdem leitet und kuratiert sie Inhalte für O'Reilly-AI-Superstream-Veranstaltungen. Zuvor war sie als Software Engineer bei Cisco und MapR tätig und beschäftigte sich mit Infrastrukturen für Rechenzentren, Big Data und KI-Anwendungen.
»Wow – dieses Buch wird Ihnen helfen, Ihre Data-Science- Projekte von der ersten Idee bis zur Produktion zu bringen. Chris und Antje beschreiben alle wichtigen Konzepte und AWS-Services mit vielen Beispielen aus der Praxis, damit Sie gut in Ihre Data- Science-Reise starten können.« – Jeff Barr, Vice President und Chief Evangelist bei Amazon Web Services
Erscheinungsdatum | 18.03.2022 |
---|---|
Reihe/Serie | Animals |
Übersetzer | Marcus Fraaß |
Verlagsort | Heidelberg |
Sprache | deutsch |
Maße | 165 x 240 mm |
Einbandart | kartoniert |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Amazon AI • Amazon Web Services • Big Data • Cloud • cloud services • computer vision • Continuous AI • data engineering • Data Mining • Datenanalyse • Deployment • KI • Künstliche Intelligenz • Modelltraining • Natural Language Processing • NLP • Python |
ISBN-10 | 3-96009-184-2 / 3960091842 |
ISBN-13 | 978-3-96009-184-4 / 9783960091844 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich