Energy Minimization Methods in Computer Vision and Pattern Recognition
Springer Berlin (Verlag)
978-3-540-40498-9 (ISBN)
Unsupervised Learning and Matching.- Stochastic Search for Optimal Linear Representations of Images on Spaces with Orthogonality Constraints.- Local PCA for Strip Line Detection and Thinning.- Curve Matching Using the Fast Marching Method.- EM Algorithm for Clustering an Ensemble of Graphs with Comb Matching.- Information Force Clustering Using Directed Trees.- Watershed-Based Unsupervised Clustering.- Probabilistic Modelling.- Active Sampling Strategies for Multihypothesis Testing.- Likelihood Based Hierarchical Clustering and Network Topology Identification.- Learning Mixtures of Tree-Unions by Minimizing Description Length.- Image Registration and Segmentation by Maximizing the Jensen-Rényi Divergence.- Asymptotic Characterization of Log-Likelihood Maximization Based Algorithms and Applications.- Maximum Entropy Models for Skin Detection.- Hierarchical Annealing for Random Image Synthesis.- On Solutions to Multivariate Maximum ?-Entropy Problems.- Segmentation and Grouping.- Semi-supervised Image Segmentation by Parametric Distributional Clustering.- Path Variation and Image Segmentation.- A Fast Snake Segmentation Method Applied to Histopathological Sections.- A Compositionality Architecture for Perceptual Feature Grouping.- Using Prior Shape and Points in Medical Image Segmentation.- Separating a Texture from an Arbitrary Background Using Pairwise Grey Level Cooccurrences.- Shape Modelling.- Surface Recovery from 3D Point Data Using a Combined Parametric and Geometric Flow Approach.- Geometric Analysis of Continuous, Planar Shapes.- Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling.- Definition of a Signal-to-Noise Ratio for Object Segmentation Using Polygonal MDL-Based Statistical Snakes.- Restoration and Reconstruction.-Minimization of Cost-Functions with Non-smooth Data-Fidelity Terms to Clean Impulsive Noise.- A Fast GEM Algorithm for Bayesian Wavelet-Based Image Restoration Using a Class of Heavy-Tailed Priors.- Diffusion Tensor MR Image Restoration.- A MAP Estimation Algorithm Using IIR Recursive Filters.- Estimation of Rank Deficient Matrices from Partial Observations: Two-Step Iterative Algorithms.- Contextual and Non-combinatorial Approach to Feature Extraction.- Graphs and Graph-Based Methods.- Generalizing the Motzkin-Straus Theorem to Edge-Weighted Graphs, with Applications to Image Segmentation.- Generalized Multi-camera Scene Reconstruction Using Graph Cuts.- Graph Matching Using Spectral Seriation.
Erscheint lt. Verlag | 26.6.2003 |
---|---|
Reihe/Serie | Lecture Notes in Computer Science |
Zusatzinfo | XI, 534 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 776 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Schlagworte | 3D • algorithm • Algorithm analysis and problem complexity • Algorithmic Learning • algorithms • Clustering • Cognition • computer vision • Energy Minimization • expectation–maximization algorithm • Expectation-Maximization algorithm • Geometric Computing • hidden Markov models • Image Analysis • image classification • Markov Random Fields • Neural networks • optical flow • Optimization • pattern recognition • Textur |
ISBN-10 | 3-540-40498-8 / 3540404988 |
ISBN-13 | 978-3-540-40498-9 / 9783540404989 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich