Deep Reinforcement Learning with Python (eBook)
XIX, 382 Seiten
Apress (Verlag)
978-1-4842-6809-4 (ISBN)
- Examine deep reinforcement learning
- Implement deep learning algorithms using OpenAI's Gym environment
- Code your own game playing agents for Atari using actor-critic algorithms
- Apply best practices for model building and algorithm training
Nimish is a passionate technical leader who brings to table extreme focus on use of technology for solving customer problems. He has over 25 years of work experience in the Software and Consulting. Nimish has held leadership roles with P&L responsibilities at PwC, IBM and Oracle. In 2006 he set out on his entrepreneurial journey in Software consulting at SOAIS with offices in Boston, Chicago and Bangalore. Today the firm provides Automation and Digital Transformation services to Fortune 100 companies helping them make the transition from on-premise applications to the cloud.
He is also an angel investor in the space of AI and Automation driven startups. He has co-founded Paybooks, a SaaS HR and Payroll platform for Indian market. He has also cofounded a Boston based startup which offers ZipperAgent and ZipperHQ, a suite of AI driven workflow and video marketing automation platforms. He currently hold the position as CTO and Chief Data Scientist for both these platforms.
Nimish has an MBA from Indian Institute of Management in Ahmedabad, India and a BS in Electrical Engineering from Indian Institute of Technology in Kanpur, India. He also holds multiple certifications in AI and Deep Learning.
Deep reinforcement learning is a fast-growing discipline that is making a significant impact in fields of autonomous vehicles, robotics, healthcare, finance, and many more. This book covers deep reinforcement learning using deep-q learning and policy gradient models with coding exercise.You'll begin by reviewing the Markov decision processes, Bellman equations, and dynamic programming that form the core concepts and foundation of deep reinforcement learning. Next, you'll study model-free learning followed by function approximation using neural networks and deep learning. This is followed by various deep reinforcement learning algorithms such as deep q-networks, various flavors of actor-critic methods, and other policy-based methods. You'll also look at exploration vs exploitation dilemma, a key consideration in reinforcement learning algorithms, along with Monte Carlo tree search (MCTS), which played a key role inthe success of AlphaGo. The final chapters conclude with deep reinforcement learning implementation using popular deep learning frameworks such as TensorFlow and PyTorch. In the end, you'll understand deep reinforcement learning along with deep q networks and policy gradient models implementation with TensorFlow, PyTorch, and Open AI Gym.What You'll LearnExamine deep reinforcement learning Implement deep learning algorithms using OpenAI's Gym environmentCode your own game playing agents for Atari using actor-critic algorithmsApply best practices for model building and algorithm training Who This Book Is ForMachine learning developers and architects who want to stay ahead of the curve in the field of AI and deep learning.
Erscheint lt. Verlag | 1.4.2021 |
---|---|
Zusatzinfo | XIX, 382 p. 132 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Artificial Intelligence • autonomous vehicle • Deep Q - Learning • Deep Reinforcement Learning • machine learning • Markov Decision Processes • Neural networks • OpenAI Gym • PyTorch • Robotics |
ISBN-10 | 1-4842-6809-1 / 1484268091 |
ISBN-13 | 978-1-4842-6809-4 / 9781484268094 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich