Scale Space and Variational Methods in Computer Vision
Springer International Publishing (Verlag)
978-3-030-75548-5 (ISBN)
The 45 papers included in this volume were carefully reviewed and selected from a total of 64 submissions. They were organized in topical sections named as follows: scale space and partial differential equations methods; flow, motion and registration; optimization theory and methods in imaging; machine learning in imaging; segmentation and labelling; restoration, reconstruction and interpolation; and inverse problems in imaging.
Scale Space and Partial Differential Equations Methods.- Scale-covariant and Scale-invariant Gaussian Derivative Networks.- Quantisation Scale-Spaces.- Equivariant Deep Learning via Morphological and Linear Scale Space PDEs on the Space of Positions and Orientations.- Nonlinear Spectral Processing of Shapes via Zero-homogeneous Flows.- Total-Variation Mode Decomposition.- Fast Morphological Dilation and Erosion for Grey Scale Images Using the Fourier Transform.- Diffusion, Pre-Smoothing and Gradient Descent.- Local Culprits of Shape Complexity.- Extension of Mathematical Morphology in Riemannian Spaces.- Flow, Motion and Registration.- Multiscale Registration.- Challenges for Optical Flow Estimates in Elastography.- An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation.- Low-rank Registration of Images Captured Under Unknown, Varying Lighting.- Towards Efficient Time Stepping for Numerical Shape Correspondence.- First Order Locally Orderless Registration.- Optimization Theory and Methods in Imaging.- First Order Geometric Multilevel Optimization For Discrete Tomography.- Bregman Proximal Gradient Algorithms for Deep Matrix Factorization.- Hessian Initialization Strategies for L-BFGS Solving Non-linear Inverse Problems.- Inverse Scale Space Iterations for Non-Convex Variational Problems Using Functional Lifting.- A Scaled and Adaptive FISTA Algorithm for Signal-dependent Sparse Image Super-resolution Problems.- Convergence Properties of a Randomized Primal-Dual Algorithm with Applications to Parallel MRI.- Machine Learning in Imaging.- Wasserstein Generative Models for Patch-based Texture Synthesis.- Sketched Learning for Image Denoising.- Translating Numerical Concepts for PDEs into Neural Architectures.- CLIP: Cheap Lipschitz Training of Neural Networks.- Variational Models for Signal Processing with Graph Neural Networks.- Synthetic Imagesas a Regularity Prior for Image Restoration Neural Networks.- Geometric Deformation on Objects: Unsupervised Image Manipulation via Conjugation.- Learning Local Regularization for Variational Image Restoration.- Segmentation and Labelling.- On the Correspondence between Replicator Dynamics and Assignment Flows.- Learning Linear Assignment Flows for Image Labeling via Exponential Integration.- On the Geometric Mechanics of Assignment Flows for Metric Data Labeling.- A Deep Image Prior Learning Algorithm for Joint Selective Segmentation and Registration.- Restoration, Reconstruction and Interpolation.- Inpainting-based Video Compression in FullHD.- Sparsity-aided Variational Mesh Restoration.- Lossless PDE-based Compression of 3D Medical Images.- Splines for Image Metamorphosis.- Residual Whiteness Principle for Automatic Parameter Selection in `2-`2 Image Super-resolution Problems.- Inverse Problems in Imaging.- Total Deep Variation for Noisy Exit Wave Reconstruction in Transmission Electron Microscopy.- GMM-based Simultaneous Reconstruction and Segmentation in X-ray CT application.- Phase Retrieval via Polarization in Dynamical Sampling.- Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence.- Adversarially Learned Iterative Reconstruction for Imaging Inverse Problems.- Towards Off-the-grid Algorithms for Total Variation Regularized Inverse Problems.- Multi-frame Super-resolution from Noisy Data.
Erscheinungsdatum | 01.05.2021 |
---|---|
Reihe/Serie | Image Processing, Computer Vision, Pattern Recognition, and Graphics | Lecture Notes in Computer Science |
Zusatzinfo | XIV, 580 p. 36 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 902 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Applications • Communication Systems • Computer Networks • Computer Science • computer vision • conference proceedings • Correlation Analysis • Image Analysis • Image Processing • Image Quality • image reconstruction • Image Segmentation • Informatics • Inverse Problems • machine learning • Mathematical imaging • Numerical Methods • Optimization • Partial differential equations • pattern recognition • Research • scale-space • Scale space • Signal Processing • variational methods |
ISBN-10 | 3-030-75548-7 / 3030755487 |
ISBN-13 | 978-3-030-75548-5 / 9783030755485 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich