Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nature-Inspired Computation in Data Mining and Machine Learning -

Nature-Inspired Computation in Data Mining and Machine Learning

Xin-She Yang, Xing-Shi He (Herausgeber)

Buch | Softcover
XI, 273 Seiten
2020 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-28555-5 (ISBN)
CHF 164,75 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book reviews the latest developments in nature-inspired computation, with a focus on the cross-disciplinary applications in data mining and machine learning. Data mining, machine learning and nature-inspired computation are current hot research topics due to their importance in both theory and practical applications. Adopting an application-focused approach, each chapter introduces a specific topic, with detailed descriptions of relevant algorithms, extensive literature reviews and implementation details. Covering topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, feature selection, cybersecurity, learning algorithms over cloud, extreme learning machines, object categorization, particle swarm optimization, flower pollination and firefly algorithms, and neural networks, it also presents case studies and applications, including classifications of crisis-related tweets, extraction of named entities in the Tamil language, performance-based prediction of diseases, and healthcare services. This book is both a valuable a reference resource and a practical guide for students, researchers and professionals in computer science, data and management sciences, artificial intelligence and machine learning.

Adaptive Improved Flower Pollination Algorithm for Global Optimization.- Algorithms for Optimization and Machine Learning over Cloud.- Implementation of Machine Learning and Data Mining to Improve Cybersecurity and Limit Vulnerabilities to Cyber Attacks.- Comparative analysis of different classifiers on crisis-related tweets: An elaborate study.- An Improved Extreme Learning Machine Tuning by Flower Pollination Algorithm.- Prospects of Machine and Deep Learning in Analysis of Vital Signs for the Improvement of Healthcare Services.

Erscheinungsdatum
Reihe/Serie Studies in Computational Intelligence
Zusatzinfo XI, 273 p. 87 illus., 66 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 444 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Bioinformatics • bio-inspired computation • Computational Intelligence • Data Mining • Data Modeling • Evolutionary Computing • Heuristics • machine learning • Nature-Inspired Algorithm • pattern recognition
ISBN-10 3-030-28555-3 / 3030285553
ISBN-13 978-3-030-28555-5 / 9783030285555
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85