Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geometry and Analysis of Metric Spaces via Weighted Partitions - Jun Kigami

Geometry and Analysis of Metric Spaces via Weighted Partitions

(Autor)

Buch | Softcover
VIII, 164 Seiten
2020 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-54153-8 (ISBN)
CHF 74,85 inkl. MwSt

The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the text:

  1. It is shown that a weight corresponds to a metric if and only if the associated weighted graph is Gromov hyperbolic.
  2. Various relations between metrics and measures such as bilipschitz equivalence, quasisymmetry, Ahlfors regularity, and the volume doubling property are translated to relations between weights. In particular, it is shown that the volume doubling property between a metric and a measure corresponds to a quasisymmetry between two metrics in the language of weights.
  3. The Ahlfors regular conformal dimension of a compact metric space is characterized as the critical index of p-energies associated with the partition and the weight function corresponding to the metric.

 These notes should interest researchers and PhD students working in conformal geometry, analysis on metric spaces, and related areas.


lt;br />

- Introduction and a Showcase. - Partitions, Weight Functions and Their Hyperbolicity. - Relations of Weight Functions. - Characterization of Ahlfors Regular Conformal Dimension.

"The monograph is well-written and concerns a novel idea which has great potential to become a major concept in areas such as fractal geometry and dynamical systems theory. It is written at the level of graduate students and for researchers interested in the aforementioned areas." (Peter Massopust, zbMATH 1455.28001, 2021)

Erscheinungsdatum
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo VIII, 164 p. 10 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 272 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Ahlfors Regular Conformal Dimension • Gromov hyperbolicity • infinite graph • metrics • Partition
ISBN-10 3-030-54153-3 / 3030541533
ISBN-13 978-3-030-54153-8 / 9783030541538
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90