Etude de cas en statistique décisionnelle
Technip (Verlag)
978-2-7108-1187-9 (ISBN)
Étude de Cas en statistique décisionnelles
Deuxième édition
Comprendre les principes théoriques de la statistique est une chose ; savoir les mettre en pratique en est une autre, et le fossé peut être large entre les deux.
C'est pour vous aider à le franchir que l'auteur a écrit un ouvrage de « travaux pratiques » de la statistique décisionnelle et de la data science, qui fait suite à son ouvrage Data Mining et Statistique Décisionnelle paru dans la même collection.
Ce nouvel ouvrage présente une étude de cas réalisée de A à Z à partir du même jeu de données, et répondant de façon complète et cohérente à deux importantes problématiques : la construction d'une segmentation de clientèle et l'élaboration d'un score d'appétence à l'achat d'un produit ou la souscription d'un contrat.
Les données utilisées sont à la fois réelles et complètes. Elles proviennent du secteur de l'assurance, mais l'étude qu'elles permettent de réaliser peut se transposer à de nombreux autres domaines. Ces données sont disponibles sur le Web, notamment sur le site des Éditions Technip où elles sont accompagnées des programmes présentés dans l'ouvrage. Ceci permettra au lecteur de compléter sa lecture par des exercices personnels, par le test de variantes, mais aussi d'utiliser ces programmes pour les appliquer à ses propres données et ses propres projets.
L'étude de cas est menée avec le logiciel SAS, qui est à la fois le plus complet et le plus répandu des logiciels statistiques commerciaux, et qui permet de traiter tous les sujets abordés dans l'ouvrage, et même d'optimiser et d'automatiser les traitements. Tout au long de l'ouvrage, une bonne partie des procédures classiques de SAS/STAT est passée en revue, en mentionnant les améliorations des versions récentes, mais, au-delà des questions de programmation, nous souhaitons surtout montrer au lecteur qu'il est souhaitable et possible de conjuguer rigueur et productivité.
Pour le scoring, quatre méthodes classiques de modélisation sont mises en oeuvre et comparées, l'analyse discriminante linéaire, les arbres de décision, la régression logistique et le classificateur bayésien naïf, de même que le bagging et deux méthodes plus avancées mises en oeuvre par l'appel de code R clans le programme SAS : les forêts aléatoires et le gradient boosting.
Erscheinungsdatum | 28.04.2020 |
---|---|
Sprache | französisch |
Maße | 170 x 240 mm |
Gewicht | 710 g |
Einbandart | Paperback |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
ISBN-10 | 2-7108-1187-1 / 2710811871 |
ISBN-13 | 978-2-7108-1187-9 / 9782710811879 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich