Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Knotted Surfaces and Their Diagrams - J.Scott Carter, Masahico Saito

Knotted Surfaces and Their Diagrams

Buch | Hardcover
258 Seiten
1997
American Mathematical Society (Verlag)
978-0-8218-0593-0 (ISBN)
CHF 186,75 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Presents the theory of knotted surfaces in analogy with the classical case of knotted curves in 3-dimensional space. This book shows how to unknot intricate examples using moves. It reviews the theory of knotted surfaces.
In this book the authors develop the theory of knotted surfaces in analogy with the classical case of knotted curves in 3-dimensional space. In the first chapter knotted surface diagrams are defined and exemplified; these are generic surfaces in 3-space with crossing information given. The diagrams are further enhanced to give alternative descriptions. A knotted surface can be described as a movie, as a kind of labeled planar graph, or as a sequence of words in which successive words are related by grammatical changes. In the second chapter, the theory of Reidemeister moves is developed in the various contexts.The authors show how to unknot intricate examples using these moves. The third chapter reviews the braid theory of knotted surfaces. Examples of the Alexander isotopy are given, and the braid movie moves are presented. In the fourth chapter, properties of the projections of knotted surfaces are studies. Oriented surfaces in 4-space are shown to have planar projections without cusps and without branch points. Signs of triple points are studied.Applications of triple-point smoothing that include proofs of triple-point formulas and a proof of Whitney's congruence on normal Euler classes are presented. The fifth chapter indicates how to obtain presentations for the fundamental group and the Alexander modules. Key examples are worked in detail. The Seifert algorithm for knotted surfaces is presented and exemplified. The sixth chapter relates knotted surfaces and diagrammatic techniques to 2-categories. Solutions to the Zamolodchikov equations that are diagrammatically obtained are presented. The book contains over 200 illustrations that illuminate the text. Examples are worked out in detail, and readers have the opportunity to learn first-hand a series of remarkable geometric techniques.

Diagrams of knotted surfaces Moving knotted surfaces Braid theory in dimension four Combinatorics of knotted surface diagrams The fundamental group and the Seifert algorithm Algebraic structures related to knotted surface diagrams Bibliography Index.

Erscheint lt. Verlag 1.1.1998
Reihe/Serie Mathematical Surveys and Monographs
Zusatzinfo Illustrations
Verlagsort Providence
Sprache englisch
Gewicht 685 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8218-0593-2 / 0821805932
ISBN-13 978-0-8218-0593-0 / 9780821805930
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90