Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Planar Maps, Random Walks and Circle Packing - Asaf Nachmias

Planar Maps, Random Walks and Circle Packing

École d'Été de Probabilités de Saint-Flour XLVIII - 2018

(Autor)

Buch | Softcover
XII, 120 Seiten
2019 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-27967-7 (ISBN)
CHF 74,85 inkl. MwSt

This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits.  One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided.

A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe's circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps.

The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.


- Introduction. - Random Walks and Electric Networks. - The Circle Packing Theorem. - Parabolic and Hyperbolic Packings. - Planar Local Graph Limits. - Recurrence of Random Planar Maps. - Uniform Spanning Trees of Planar Graphs. - Related Topics.

"The most remarkable aspect of the Lecture Notes is the reader-friendly structure and the style in which it has been written. There are masses of examples either worked out in the text or left for the reader. A number of facts are equipped with graphical illustrations. The importance of this Lecture Notes by the author both from the practical and from the theoretical standpoint is unquestionable." (Viktor Ohanyan, zbMATH 1471.60007, 2021)

"The whole material is very nicely presented and the book may serve as the support for a graduate course in probability." (Nicolas Curien, Mathematical Reviews, November, 2020)

Erscheinungsdatum
Reihe/Serie École d'Été de Probabilités de Saint-Flour
Lecture Notes in Mathematics
Zusatzinfo XII, 120 p. 36 illus., 8 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 213 g
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Circle Packing • Electric Networks • open access • Planar Maps • Random Walk • Uniform Spanning Trees
ISBN-10 3-030-27967-7 / 3030279677
ISBN-13 978-3-030-27967-7 / 9783030279677
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 39,20
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95