Road Terrain Classification Technology for Autonomous Vehicle (eBook)
XVI, 97 Seiten
Springer Singapore (Verlag)
978-981-13-6155-5 (ISBN)
Shifeng Wang has double doctoral degrees. He received Eng. D. from Changchun University of science and technology in 2008, later on he received Ph.D. from University of Technology Sydney in 2013. He is an associate Professor at Key Laboratory of Optoelectronic Measurement and Optical Information Transmission Technology of Ministry of Education, National Demonstration Center for Experimental Optoelectronic Engineering Education, School of Optoelectronic Engineering, Changchun University of Science and Technology. He majored in Robot Science and Artificial Intelligence. He undertook many major research projects in China and Austrlia. From 2010-2013, he is in charge of the 'An Instrumented Vehicle for Research on Safe Driving Project' and the 'Human-Machine Interaction for Driving Assistant System Project', both financial aided by the Australia government. He has been granted 6 invention patents and applied another 8 ones related to the autonomous vehicle and published more than 20 technical papers. This book is finically supported by the project of Natural Science Foundation of Jilin Province (20150101047JC), China.
This book provides cutting-edge insights into autonomous vehicles and road terrain classification, and introduces a more rational and practical method for identifying road terrain. It presents the MRF algorithm, which combines the various sensors' classification results to improve the forward LRF for predicting upcoming road terrain types. The comparison between the predicting LRF and its corresponding MRF show that the MRF multiple-sensor fusion method is extremely robust and effective in terms of classifying road terrain. The book also demonstrates numerous applications of road terrain classification for various environments and types of autonomous vehicle, and includes abundant illustrations and models to make the comparison tables and figures more accessible.
Shifeng Wang has double doctoral degrees. He received Eng. D. from Changchun University of science and technology in 2008, later on he received Ph.D. from University of Technology Sydney in 2013. He is an associate Professor at Key Laboratory of Optoelectronic Measurement and Optical Information Transmission Technology of Ministry of Education, National Demonstration Center for Experimental Optoelectronic Engineering Education, School of Optoelectronic Engineering, Changchun University of Science and Technology. He majored in Robot Science and Artificial Intelligence. He undertook many major research projects in China and Austrlia. From 2010-2013, he is in charge of the "An Instrumented Vehicle for Research on Safe Driving Project" and the "Human-Machine Interaction for Driving Assistant System Project", both financial aided by the Australia government. He has been granted 6 invention patents and applied another 8 ones related to the autonomous vehicle and published more than 20 technical papers. This book is finically supported by the project of Natural Science Foundation of Jilin Province (20150101047JC), China.
Introduction.- Review of Related Work.- Acceleration Based Road Terrain Classification.- Image Based Road Terrain Classification.- LRF Based Road Terrain Classification.- Multiple-Sensor Based Road Terrain Classification.- Conclusion and Future Direction.
Erscheint lt. Verlag | 15.3.2019 |
---|---|
Reihe/Serie | Unmanned System Technologies | Unmanned System Technologies |
Zusatzinfo | XVI, 97 p. 43 illus., 32 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Fahrzeugbau / Schiffbau | |
Technik ► Maschinenbau | |
Schlagworte | Fast Fourier transform • Grey-Level Co-occurrence Matrix • Laser Range Finder • markov random field • Mutiple Sensor • Power Spectral Density • Principal Component Analysis • Support Vector Machine |
ISBN-10 | 981-13-6155-X / 981136155X |
ISBN-13 | 978-981-13-6155-5 / 9789811361555 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 4,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich