Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Deep Learning Classifiers with Memristive Networks -

Deep Learning Classifiers with Memristive Networks

Theory and Applications

Alex Pappachen James (Herausgeber)

Buch | Hardcover
XIII, 213 Seiten
2019 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-14522-4 (ISBN)
CHF 239,65 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.

Available in MS

Erscheinungsdatum
Reihe/Serie Modeling and Optimization in Science and Technologies
Zusatzinfo XIII, 213 p. 124 illus., 102 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 508 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Deep Learning Algorithms • Deep Neuro-fuzzy Networks • DNN- based Models for Speech Recognition • Gradient Descent Algorithm • Hierarchical Temporal Memories • Memristive Convolutional Neural Network • Memristive Crossbar Arrays • Memristive Deep Neural Networks • Memristive Edge Computing • Memristive Long Short Term Memory • Memristor Materials • Memristor Models • Memristor Multi-level Memories • Modular Crossbar Array • Neural Network Classifiers • Neuro-memristive Computing
ISBN-10 3-030-14522-0 / 3030145220
ISBN-13 978-3-030-14522-4 / 9783030145224
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Wolfram Langer

Buch | Hardcover (2023)
Rheinwerk (Verlag)
CHF 69,85
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85