Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Introduction to Algebraic Structures (eBook)

eBook Download: EPUB
2012
272 Seiten
Dover Publications (Verlag)
978-0-486-15041-3 (ISBN)

Lese- und Medienproben

Introduction to Algebraic Structures -  Joseph Landin
Systemvoraussetzungen
22,91 inkl. MwSt
(CHF 22,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.
As the author notes in the preface, "e;The purpose of this book is to acquaint a broad spectrum of students with what is today known as 'abstract algebra.'"e; Written for a one-semester course, this self-contained text includes numerous examples designed to base the definitions and theorems on experience, to illustrate the theory with concrete examples in familiar contexts, and to give the student extensive computational practice.The first three chapters progress in a relatively leisurely fashion and include abundant detail to make them as comprehensible as possible. Chapter One provides a short course in sets and numbers for students lacking those prerequisites, rendering the book largely self-contained. While Chapters Four and Five are more challenging, they are well within the reach of the serious student.The exercises have been carefully chosen for maximum usefulness. Some are formal and manipulative, illustrating the theory and helping to develop computational skills. Others constitute an integral part of the theory, by asking the student to supply proofs or parts of proofs omitted from the text. Still others stretch mathematical imaginations by calling for both conjectures and proofs.Taken together, text and exercises comprise an excellent introduction to the power and elegance of abstract algebra. Now available in this inexpensive edition, the book is accessible to a wide range of students, who will find it an exceptionally valuable resource.

A Professor Emeritus at the University of Illinois, Joseph Landin served as Head of the Department of Mathematics for 10 years.

1. Sets and Numbers I. THE ELEMENTS OF SET THEORY 1. The Concept of Set 2. "Constants, Variables and Related Matters" 3. Subsets and Equality of Sets 4. The Algebra of Sets; The Empty Set 5. A Notation for Sets 6. Generalized Intersection and Union 7. Ordered Pairs and Cartesian Products 8. Functions (or Mappings) 9. A Classification of Mappings 10. Composition of Mappings 11. Equivalence Relations and Partititions II. THE REAL NUMBERS 12. Introduction 13. The Real Numbers 14. The Natural Numbers 15. The Integers 16. The Rational Numbers 17. The Complex Numbers2. The Theory of Groups 1. The Group Concept 2. Some Simple Consequences of the Definition of Group 3. Powers of Elements in a Group 4. Order of a Group; Order of a Group Element 5. Cyclic Groups 6. The Symmetric Groups 7. Cycles; Decomposition of Permutations into Disjoint Cycles 8. Full Transformation Groups 9. Restrictions of Binary Operations 10. Subgroups 11. A Discussion of Subgroups 12. The Alternating Group 13. The Congruence of Integers 14. The Modular Arithmetics 15. Equivalence Relations and Subgroups 16. Index of a Subgroup 17. "Stable Relations, Normal Subgroups, Quotient Groups" 18. Conclusion3. Group Isomorphism and Homomorphism 1. Introduction 2. "Group Isomorphism; Examples, Definitions and Simplest Properties" 3. The Isomorphism Theorem for the Symmetric Groups 4. The Theorem of Cayley 5. Group Homomorphisms 6. A Relation Between Epimorphisms and Isomorphisms 7. Endomorphisms of a Group4. The Theory of Rings 1. Introduction 2. Definition of Ring 3. Some Properties of Rings 4. "The Modular Arithmetics, Again" 5. Integral Domains 6. Fields 7. Subrings 8. Ring Homomorphisms 9. Ideals 10. Residue Class Rings 11. Some Basic Homomorphism Theorems 12. Principle Ideal and Unique Factorization Domains 13. Prime and Maximal Ideals 14. The Quotient Field of an Integral Domain5. Polynomial Rings 1. Introduction; The Concept of Polynomial Ring 2. Indeterminates 3. Existence of Indeterminates 4. Polynomial Domains Over a Field 5. Unique Factorization in Polynomial Domains 6. Polynomial Rings in Two Indeterminates 7. Polynomial Functions and Polynomials 8. Some Characterizations of Intermediates 9. Substitution Homomorphisms 10. Roots of Polynomials

Erscheint lt. Verlag 29.8.2012
Reihe/Serie Dover Books on Mathematics
Sprache englisch
Maße 140 x 140 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Schlagworte abstract algebra • computational practice • computational skills • conjectures • Definitions • familiar context • group homomorphisms • groups • illustrating theory • Introduction • introduction to abstract algebra • Mathematical Logic • Numbers • Number Systems • one semester course • polynomial rings • proofs • Rings • Self contained • Sets • set theory • Studies • Theorems • theory • undergraduate studies
ISBN-10 0-486-15041-0 / 0486150410
ISBN-13 978-0-486-15041-3 / 9780486150413
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich