Transparent Data Mining for Big and Small Data
Springer International Publishing (Verlag)
978-3-319-85299-7 (ISBN)
Part I: Transparent Mining.- Chapter 1: The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good.- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens.- Chapter 3: The Princeton Web Transparency and Accountability Project.- Part II: Algorithmic solutions.- Chapter 4: Algorithmic Transparency via Quantitative Input Influence.- Chapter 5.- Learning Interpretable Classification Rules with Boolean Compressed Sensing.- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey.- Part III: Regulatory solutions.- Chapter 7: Beyond the EULA: Improving Consent for Data Mining.- Chapter 8: Regulating Algorithms Regulation? First Ethico-legal Principles, Problems and Opportunities of Algorithms.- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring AlgorithmicAccountability?
Erscheinungsdatum | 05.03.2022 |
---|---|
Reihe/Serie | Studies in Big Data |
Zusatzinfo | XV, 215 p. 23 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 367 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Schlagworte | Algorithm analysis and problem complexity • Automated Decision Making • Big Data Paradigm Shift • Black-box Algorithms • Complexity • Glass-box Algorithms • Transparent Predictive Models • Transparent vs Opaque Algorithms |
ISBN-10 | 3-319-85299-X / 331985299X |
ISBN-13 | 978-3-319-85299-7 / 9783319852997 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich