Hybrid Soft Computing for Multilevel Image and Data Segmentation
Springer International Publishing (Verlag)
978-3-319-83758-1 (ISBN)
This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures.
This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence.
Introduction.- Image Segmentation: A Review.- Self-supervised Gray Level Image Segmentation Using an Optimized MUSIG (OptiMUSIG) Activation Function.- Self-supervised Color Image Segmentation Using Parallel OptiMUSIG (ParaOptiMUSIG) Activation Function.- Self-supervised Gray Level Image Segmentation Using Multiobjective Based Optimized MUSIG (OptiMUSIG) Activation Function.- Self-supervised Color Image Segmentation Using Multiobjective Based Parallel Optimized MUSIG (ParaOptiMUSIG) Activation Function.- Unsupervised Genetic Algorithm Based Automatic Image Segmentation and Data Clustering Technique Validated by Fuzzy Intercluster Hostility Index.
Erscheinungsdatum | 05.03.2022 |
---|---|
Reihe/Serie | Computational Intelligence Methods and Applications |
Zusatzinfo | XIV, 235 p. 99 illus., 39 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 3869 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Clustering • Fuzzy Systems • Genetic algorithms • Image Segmentation • Multiobjective Optimization • Optimization • Segmentation • Soft Computing |
ISBN-10 | 3-319-83758-3 / 3319837583 |
ISBN-13 | 978-3-319-83758-1 / 9783319837581 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich