Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering - Israël César Lerman

Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering

Buch | Softcover
647 Seiten
2018 | Softcover reprint of the original 1st ed. 2016
Springer London Ltd (Verlag)
978-1-4471-7392-2 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book offers an original and broad exploration of the fundamental methods in Clustering and Combinatorial Data Analysis, presenting new formulations and ideas within this very active field.



With extensive introductions, formal and mathematical developments and real case studies, this book provides readers with a deeper understanding of the mutual relationships between these methods, which are clearly expressed with respect to three facets: logical, combinatorial  and  statistical.



Using relational mathematical representation, all types of data structures can be handled in precise and unified ways which the author highlights in three stages:





Clustering a set of descriptive attributes
Clustering a set of objects or a set of object categories
Establishing correspondence between these two dual clusterings

Tools for interpreting the reasons of a given cluster or clustering are also included.



Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering will be a valuable resource for students and researchers who are interested in the areas of Data Analysis, Clustering, Data Mining and Knowledge Discovery.

Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of “Natural” Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works

Erscheinungsdatum
Reihe/Serie Advanced Information and Knowledge Processing
Zusatzinfo 54 Illustrations, black and white; XXIV, 647 p. 54 illus.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Graphentheorie
Mathematik / Informatik Mathematik Statistik
ISBN-10 1-4471-7392-9 / 1447173929
ISBN-13 978-1-4471-7392-2 / 9781447173922
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90