Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introduction to Deep Learning - Sandro Skansi

Introduction to Deep Learning

From Logical Calculus to Artificial Intelligence

(Autor)

Buch | Softcover
XIII, 191 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-73003-5 (ISBN)
CHF 74,85 inkl. MwSt

This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.

Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.

This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia.

From Logic to Cognitive Science.- Mathematical and Computational Prerequisites.- Machine Learning Basics.- Feed-forward Neural Networks.- Modifications and Extensions to a Feed-forward Neural Network.- Convolutional Neural Networks.- Recurrent Neural Networks.- Autoencoders.- Neural Language Models.- An Overview of Different Neural Network Architectures.- Conclusion.

Erscheinungsdatum
Reihe/Serie Undergraduate Topics in Computer Science
Zusatzinfo XIII, 191 p. 38 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 324 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Autoencoders • Deep learning • Natural Language Processing • Neural networks • pattern recognition
ISBN-10 3-319-73003-7 / 3319730037
ISBN-13 978-3-319-73003-5 / 9783319730035
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85