Fourier Series and Orthogonal Functions (eBook)
432 Seiten
Dover Publications (Verlag)
978-0-486-14073-5 (ISBN)
This incisive text deftly combines both theory and practical example to introduce and explore Fourier series and orthogonal functions and applications of the Fourier method to the solution of boundary-value problems. Directed to advanced undergraduate and graduate students in mathematics as well as in physics and engineering, the book requires no prior knowledge of partial differential equations or advanced vector analysis. Students familiar with partial derivatives, multiple integrals, vectors, and elementary differential equations will find the text both accessible and challenging. The first three chapters of the book address linear spaces, orthogonal functions, and the Fourier series. Chapter 4 introduces Legendre polynomials and Bessel functions, and Chapter 5 takes up heat and temperature. The concluding Chapter 6 explores waves and vibrations and harmonic analysis. Several topics not usually found in undergraduate texts are included, among them summability theory, generalized functions, and spherical harmonics. Throughout the text are 570 exercises devised to encourage students to review what has been read and to apply the theory to specific problems. Those preparing for further study in functional analysis, abstract harmonic analysis, and quantum mechanics will find this book especially valuable for the rigorous preparation it provides. Professional engineers, physicists, and mathematicians seeking to extend their mathematical horizons will find it an invaluable reference as well.
1. Linear Spaces 1.1 Functions 1.2 Vectors 1.3 Linear Spaces 1.4 Finite-dimensional Linear Spaces 1.5 Infinite-dimensional Linear Spaces2. Orthogonal Functions 2.1 Inner Products 2.2 Orthogonal Functions and Vectors 2.3 Orthogonal Sequences 2.4 Differential Operators 2.5 Integral Operators 2.6 Convolution and the Dirichlet Kernel3. Fourier Series 3.1 Motivation 3.2 Definitions 3.3 Examples of Trigonometric Series 3.4 Sine and Cosine Series 3.5 The Gibbs Phenomenon 3.6 Local Convergence of Fourier Series 3.7 Uniform Convergence 3.8 Convergence of Fourier Series 3.9 Divergent Series 3.10 Generalized Functions 3.11 Practical Remarks4. Legendre Polynomials and Bessel Functions 4.1 Partial Differential Equations 4.2 The Intuitive Meaning of the Laplacian Operator 4.3 Legendre Polynomials 4.4 Laplace's Equation in Spherical Coordinates 4.5 Spherical Harmonics 4.6 Bessel Functions5. Heat and Temperature 5.1 Theory of Heat Conduction 5.2 Temperature of Plates 5.3 Temperature of Solids 5.4 Harmonic Functions 5.5 Existence Theorems 5.6 Heat Flow6. Waves and Vibrations, Harmonic Analysis 6.1 The Vibrating String 6.2 The One-dimensional Wave Equation 6.3 The Weighted String 6.4 String with Variable Tension and Density 6.5 Vibrating Membranes 6.6 Waves in Two and Three Dimensions 6.7 The Fourier Integral 6.8 Algebraic Concepts in Analysis Supplementary ExercisesAppendix. Functions on Groups Answers and Notes; Index
Erscheint lt. Verlag | 5.9.2012 |
---|---|
Reihe/Serie | Dover Books on Mathematics |
Sprache | englisch |
Maße | 140 x 140 mm |
Gewicht | 476 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 0-486-14073-3 / 0486140733 |
ISBN-13 | 978-0-486-14073-5 / 9780486140735 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich