Representations of Lie Algebras and Partial Differential Equations (eBook)
XXXVI, 620 Seiten
Springer Singapore (Verlag)
978-981-10-6391-6 (ISBN)
This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author's works and his joint works with his former students. Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra.
Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certain equivalent combinatorial properties on representation formulas, and the irreducibility of representations is proved directly related to algebraic varieties. The book offers a valuable reference guide for mathematicians and scientists alike. As it is largely self-contained - readers need only a minimal background in calculus and linear algebra - it can also be used as a textbook.
In 1992, Xiaoping Xu obtained his Ph.D. from Rutgers University in United States. He had worked at the Hong Kong University of Sciences and Technology from 1992 to 2002. He has been a professor at Institute of Mathematics of Chinese Academy of Sciences since 2002 and a professor at the University at Chinese Academy of Sciences since 2014.
This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author's works and his joint works with his former students. Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra.Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certain equivalent combinatorial properties on representation formulas, and the irreducibility of representations is proved directly related to algebraic varieties. The book offers a valuable reference guide for mathematicians and scientists alike. As it is largely self-contained - readers need only a minimal background in calculus and linear algebra - it can also be used as a textbook.
In 1992, Xiaoping Xu obtained his Ph.D. from Rutgers University in United States. He had worked at the Hong Kong University of Sciences and Technology from 1992 to 2002. He has been a professor at Institute of Mathematics of Chinese Academy of Sciences since 2002 and a professor at the University at Chinese Academy of Sciences since 2014.
Preface.- Introduction.- I Fundament of Lie Algebras.- Preliminary of Lie Algebras.- Semisimple Lie Algebras.- Root Systems.- Isomorphisms, Conjugacy and Exceptional Types.- Highest-Weight Representation Theory.- II Explicit Representations.- Representations of Special Linear Algebras.- Representations of Even Orthogonal Lie Algebras.- Representations of Odd Orthogonal Lie Algebras.- Representations of Symplectic Lie Algebras.- Representations of G 2 and F 4.- Representations of E6.- Representations of E.- III Related Topics.- Oscillator Representations of gl(n | m) and osp(n | 2m).- Representation Theoretic Codes.- Path Hypergeometric Functions.- Bibliography.- Index.
Erscheint lt. Verlag | 16.10.2017 |
---|---|
Zusatzinfo | XXXVI, 620 p. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Schlagworte | Codes Related to Representations • Even Orthogonal Lie Algebras • Odd Orthogonal Lie Algebras • Partial differential equations • Representations of Lie Algebras • Root-Related Integrable Systems • Special Linear Algebras • Symplectic Lie Algebras |
ISBN-10 | 981-10-6391-5 / 9811063915 |
ISBN-13 | 978-981-10-6391-6 / 9789811063916 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich