Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Matrices and Linear Algebra (eBook)

eBook Download: EPUB
2012
432 Seiten
Dover Publications (Verlag)
978-0-486-13930-2 (ISBN)

Lese- und Medienproben

Matrices and Linear Algebra -  George Phillip Barker,  Hans Schneider
Systemvoraussetzungen
23,05 inkl. MwSt
(CHF 22,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Basic textbook covers theory of matrices and its applications to systems of linear equations and related topics such as determinants, eigenvalues, and differential equations. Includes numerous exercises.
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related topics such as determinants, eigenvalues, and differential equations.Table of Contents:l. The Algebra of Matrices2. Linear Equations3. Vector Spaces4. Determinants5. Linear Transformations6. Eigenvalues and Eigenvectors7. Inner Product Spaces8. Applications to Differential EquationsFor the second edition, the authors added several exercises in each chapter and a brand new section in Chapter 7. The exercises, which are both true-false and multiple-choice, will enable the student to test his grasp of the definitions and theorems in the chapter. The new section in Chapter 7 illustrates the geometric content of Sylvester's Theorem by means of conic sections and quadric surfaces. 6 line drawings. lndex. Two prefaces. Answer section.

Preface to the Second Edition; Preface to the First Edition1. The Algebra of Matrices 1. Matrices: Definitions 2. Addition and Scalar Multiplication of Matrices 3. Matrix Multiplication 4. Square Matrices, Inverses, and Zero Divisors 5. Transposes, Partitioning of Matrices, and Direct Sums2. Linear Equations 1. Equivalent Systems of Equations 2. Row Operations on Matrices 3. Row Echelon Form 4. Homogeneous Systems of Equations 5. The Unrestricted Case: A Consistency Condition 6. The Unrestricted Case: A General Solution 7. Inverses of Nonsingular Matrices3. Vector Spaces 1. Vectors and Vector Spaces 2. Subspaces and Linear Combinations 3. Linear Dependence and Linear Independence 4. Bases 5. Bases and Representations 6. Row Spaces of Matrices 7. Column Equivalence 8. Row-Column Equivalence 9. Equivalence Relations and Canonical Forms of Matrices4. Determinants 1. Introduction as a Volume Function 2. Permutations and Permutation Matrices 3. Uniqueness and Existence of the Determinant Function 4. Practical Evaluation and Transposes of Determinants 5. Cofactors, Minors, and Adjoints 6. Determinants and Ranks5. Linear Transformations 1. Definitions 2. Representation of Linear Transformations 3. Representations Under Change of Bases6. Eigenvalues and Eigenvectors 1. Introduction 2. Relation Between Eigenvalues and Minors 3. Similarity 4. Algebraic and Geometric Multiplicites 5. Jordan Canonical Form 6. Functions of Matrices 7. Application: Markov Chains7. Inner Produce Spaces 1. Inner Products 2. Representation of Inner Products 3. Orthogonal Bases 4. Unitary Equivalence and Hermitian Matrices 5. Congruence and Conjunctive Equivalence 6. Central Conics and Quadrics 7. The Natural Inverse 8. Normal Matrices8. Applications to Differential Equations 1. Introduction 2. Homogeneous Differential Equations 3. Linear Differrential Equations: The Unrestricted Case 4. Linear Operators: The Global View Answers; Symbols; Index

Erscheint lt. Verlag 8.6.2012
Reihe/Serie Dover Books on Mathematics
Sprache englisch
Maße 140 x 140 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-486-13930-1 / 0486139301
ISBN-13 978-0-486-13930-2 / 9780486139302
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich