Maximum-Entropy Networks
Springer International Publishing (Verlag)
9783319694368 (ISBN)
Introduction.- Maximum-entropy ensembles of graphs.- Constructing constrained graph ensembles: why and how?.- Comparing models obtained from different constraints.- Pattern detection.- Detecting assortativity and clustering.- Detecting dyadic motifs.- Detecting triadic motifs.- Some extensions to weighted networks.- Network reconstruction.- Reconstructing network properties from partial information.- The Enhanced Configuration Model.- Further reducing the observational requirements.- Graph combinatorics.- A dual route to combinatorics?.- 'Soft' combinatorial enumeration.- Quantifying ensemble (non)equivalence.- Breaking of equivalence between ensembles.- Implications of (non)equivalence for combinatorics.- "What then shall we choose?" Hardness or softness?.- Concluding remarks.
| Erscheinungsdatum | 15.12.2017 |
|---|---|
| Reihe/Serie | SpringerBriefs in Complexity |
| Zusatzinfo | XII, 116 p. 34 illus., 31 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 206 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Graphentheorie |
| Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
| Schlagworte | Binary networks • Bootstrap Method • Complexity • complex networks • degree-corrected gravity model • directed networks • Dyadic motifs • Enhanced configuration model • Maximum-entropy Ensembles • maximum likelihood estimation • triadic motifs • Undirected networks • Weighted networks |
| ISBN-13 | 9783319694368 / 9783319694368 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |