QoS Prediction in Cloud and Service Computing (eBook)
XI, 122 Seiten
Springer Singapore (Verlag)
978-981-10-5278-1 (ISBN)
This book offers a systematic and practical overview of Quality of Service prediction in cloud and service computing. Intended to thoroughly prepare the reader for research in cloud performance, the book first identifies common problems in QoS prediction and proposes three QoS prediction models to address them. Then it demonstrates the benefits of QoS prediction in two QoS-aware research areas. Lastly, it collects large-scale real-world temporal QoS data and publicly releases the datasets, making it a valuable resource for the research community. The book will appeal to professionals involved in cloud computing and graduate students working on QoS-related problems.
Yilei Zhang received his PhD in Computer Science from the Chinese University of Hong Kong. His industry-specific experience in cloud and big data spans several years as an IT professional. His research interests include big data, service computing and cloud computing. He has served as a reviewer for a number of international journals as well as conferences including TSE, TR, TSC, WWW, WSDM, KDD, ISSRE, etc. He received the best student paper award at the ICWS 2010.
Michael R. Lyu received his PhD in Computer Science from the University of California, Los Angeles. He is currently a Professor at the Chinese University of Hong Kong's Computer Science and Engineering Department. He has published 450 peer-reviewed journal and conference papers. His research interests include software reliability engineering, distributed systems, fault-tolerant computing, service computing, multimedia information retrieval, and machine learning. He was named as the IEEE Reliability Society Engineer of the Year in 2010. He is a fellow of the IEEE, ACM and AAAS.
This book offers a systematic and practical overview of Quality of Service prediction in cloud and service computing. Intended to thoroughly prepare the reader for research in cloud performance, the book first identifies common problems in QoS prediction and proposes three QoS prediction models to address them. Then it demonstrates the benefits of QoS prediction in two QoS-aware research areas. Lastly, it collects large-scale real-world temporal QoS data and publicly releases the datasets, making it a valuable resource for the research community. The book will appeal to professionals involved in cloud computing and graduate students working on QoS-related problems.
Yilei Zhang received his PhD in Computer Science from the Chinese University of Hong Kong. His industry-specific experience in cloud and big data spans several years as an IT professional. His research interests include big data, service computing and cloud computing. He has served as a reviewer for a number of international journals as well as conferences including TSE, TR, TSC, WWW, WSDM, KDD, ISSRE, etc. He received the best student paper award at the ICWS 2010. Michael R. Lyu received his PhD in Computer Science from the University of California, Los Angeles. He is currently a Professor at the Chinese University of Hong Kong’s Computer Science and Engineering Department. He has published 450 peer-reviewed journal and conference papers. His research interests include software reliability engineering, distributed systems, fault-tolerant computing, service computing, multimedia information retrieval, and machine learning. He was named as the IEEE Reliability Society Engineer of the Year in 2010. He is a fellow of the IEEE, ACM and AAAS.
1. Introduction.- 2. Neighborhood-Based QoS Prediction.- 3. Time-Aware Model-Based QoS Prediction.- 4. Online QoS Prediction.- 5. QoS-AwareWeb Service Searching.- 6. QoS-Aware Byzantine Fault Tolerance.- 7. Conclusion and Discussion.
Erscheint lt. Verlag | 2.8.2017 |
---|---|
Reihe/Serie | SpringerBriefs in Computer Science | SpringerBriefs in Computer Science |
Zusatzinfo | XI, 122 p. 41 illus., 12 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Informatik ► Weitere Themen ► Hardware | |
Schlagworte | Cloud Computing • fault tolerance • QoS Prediction • Reliability • Time Series Analysis • Web service |
ISBN-10 | 981-10-5278-6 / 9811052786 |
ISBN-13 | 978-981-10-5278-1 / 9789811052781 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
![PDF](/img/icon_pdf_big.jpg)
Größe: 3,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich