Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Python Machine Learning Case Studies - Danish Haroon

Python Machine Learning Case Studies

Five Case Studies for the Data Scientist

(Autor)

Buch | Softcover
204 Seiten
2017 | 1st ed.
Apress (Verlag)
978-1-4842-2822-7 (ISBN)
CHF 112,30 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources.
Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You’ll see machine learning techniques that you can use to support your products and services. Moreover you’ll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs.
By taking a step-by-step approach to coding in Python you’ll be able to understand the rationale behind model selection and decisions within the machine learning process. The bookis equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems.
What You Will Learn

Gain insights into machine learning concepts 

Work on real-world applications of machine learning
Learn concepts of model selection and optimization
Get a hands-on overview of Python from a machine learning point of view



Who This Book Is For
Data scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.

Danish Haroon currently leads the Data Sciences team at Market IQ Inc, a patented predictive analytics platform focused on providing actionable, real-time intelligence, culled from sentiment inflection points. He received his MBA from Karachi School for Business and Leadership, having served corporate clients and their data analytics requirements. Most recently, he led the data commercialization team at PredictifyME, a startup focused on providing predictive analytics for demand planning and real estate markets in the US market. His current research focuses on the amalgam of data sciences for improved customer experiences (CX).

Chapter 1:  Statistics and Probability.- Chapter 2:  Regression.- Chapter 3: Time series models.- Chapter 4: Classification and Clustering.- Chapter 5: Ensemble methods.

Erscheinungsdatum
Zusatzinfo 99 Illustrations, color; 21 Illustrations, black and white; XVII, 204 p. 120 illus., 99 illus. in color.
Verlagsort Berkley
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Programmiersprachen / -werkzeuge Python
Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
Schlagworte bagging • Clustering • Data Analysys • Machine Leraning • Python • Regression • Time series modelling
ISBN-10 1-4842-2822-7 / 1484228227
ISBN-13 978-1-4842-2822-7 / 9781484228227
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
das umfassende Handbuch

von Johannes Ernesti; Peter Kaiser

Buch | Hardcover (2023)
Rheinwerk (Verlag)
CHF 62,85
eine praktische, projektbasierte Programmiereinführung

von Eric Matthes

Buch | Softcover (2023)
dpunkt (Verlag)
CHF 45,95
Grundlagen und Praxis der Python-Programmierung

von Paul Barry

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 69,85