Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Descriptive Data Mining

(Autor)

Buch | Hardcover
116 Seiten
2016 | 1st ed. 2017
Springer Verlag, Singapore
978-981-10-3339-1 (ISBN)

Lese- und Medienproben

Descriptive Data Mining - David L. Olson
CHF 164,75 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Chapter 2 covers data visualization, including directions for accessing R open source software (described through Rattle). Chapter 7 goes on to describe link analysis, social network metrics, and open source NodeXL software, and demonstrates link analysis application using PolyAnalyst output.
This book offers an overview of knowledge management. It starts with an introduction to the subject, placing descriptive models in the context of the overall field as well as within the more specific field of data mining analysis. Chapter 2 covers data visualization, including directions for accessing R open source software (described through Rattle). Both R and Rattle are free to students. Chapter 3 then describes market basket analysis, comparing it with more advanced models, and addresses the concept of lift. Subsequently, Chapter 4 describes smarketing RFM models and compares it with more advanced predictive models. Next, Chapter 5 describes association rules, including the APriori algorithm and provides software support from R. Chapter 6 covers cluster analysis, including software support from R (Rattle), KNIME, and WEKA, all of which are open source. Chapter 7 goes on to describe link analysis, social network metrics, and open source NodeXL software, and demonstrates link analysis application using PolyAnalyst output. Chapter 8 concludes the monograph.
Using business-related data to demonstrate models, this descriptive book explains how methods work with some citations, but without detailed references. The data sets and software selected are widely available and can easily be accessed.

David L. Olson is the James & H.K. Stuart Professor in MIS and Chancellor’s Professor at the University of Nebraska. He has published over 200 articles in refereed journals, primarily on the topic of multiple objective decision-making and information technology. He has authored over 20 books, is co-editor-in-chief of the International Journal of Services Sciences and associate editor of a number of journals. He has given over 150 presentations at international and national conferences. He is a member of the Decision Sciences Institute, the Institute for Operations Research and Management Sciences, and the Multiple Criteria Decision Making Society. He was a Lowry Mays endowed Professor at Texas A&M University from 1999 to 2001, was named the Raymond E. Miles Distinguished Scholar in 2002, and was James C. and Rhonda Seacrest Fellow from 2005 to 2006. He was named Best Enterprise Information Systems Educator by IFIP in 2006. He is a Fellow of the Decision Sciences Institute.

Chapter 1 Knowledge Management.- Chapter 2: Data Visualization.- Chapter 3 Market Basket Analysis.- Chapter 4 Recency Frequency and Monetary Model.- Chapter 5 Association Rules.- Chapter 6 Cluster Analysis.- Chapter 7 Link Analysis.- Chapter 7 Link Analysis.- Chapter 8 Descriptive Data Mining.- References.- Index.

Erscheinungsdatum
Reihe/Serie Computational Risk Management
Zusatzinfo 60 Illustrations, color; 3 Illustrations, black and white; XI, 116 p. 63 illus., 60 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Gewicht 395 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte Big Data • Business Analytics • cluster analysis • Data Mining • Descriptive Data Mining • Open Source Software • Visualization
ISBN-10 981-10-3339-0 / 9811033390
ISBN-13 978-981-10-3339-1 / 9789811033391
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85