Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Data Analysis and Pattern Recognition in Multiple Databases - Animesh Adhikari, Jhimli Adhikari, Witold Pedrycz

Data Analysis and Pattern Recognition in Multiple Databases

Buch | Softcover
XV, 238 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2014
Springer International Publishing (Verlag)
978-3-319-37727-8 (ISBN)
CHF 167,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book presents an influence analysis between items in time-stamped databases. It covers developments in data analysis and pattern recognition in multiple databases and details the application of intelligent systems modeling to multiple database analysis.
Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patterns, icebergs and periodic patterns have been recently reported. The book presents a thorough influence analysis between items in time-stamped databases. The recent research on mining multiple related databases is covered while some previous contributions to the area are highlighted and contrasted with the most recent developments.

From the Contents: Synthesizing Different Extreme Association Rules in Multiple Data Sources.- Clustering items in time-stamped databases induced by stability.- Mining global patterns in multiple large databases.- Clustering Local Frequency Items in Multiple Data Sources.- Mining Patterns of Select Items in Different Data Sources.

Erscheinungsdatum
Reihe/Serie Intelligent Systems Reference Library
Zusatzinfo XV, 238 p. 97 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Artificial Intelligence • Computational Intelligence • Data Analysis • Data Mining • data mining and knowledge discovery • Engineering • Expert systems / knowledge-based systems • Intelligent Systems • Multiple Databases • pattern recognition
ISBN-10 3-319-37727-2 / 3319377272
ISBN-13 978-3-319-37727-8 / 9783319377278
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85