Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Complex Data Modeling and Computationally Intensive Statistical Methods - Pietro Mantovan, Piercesare Secchi

Complex Data Modeling and Computationally Intensive Statistical Methods

Buch | Softcover
164 Seiten
2016 | Softcover reprint of the original 1st ed. 2010
Springer Verlag
978-88-470-5806-4 (ISBN)
CHF 127,30 inkl. MwSt
Selected from the conference "S.Co.2009: Complex Data Modeling and Computationally Intensive Methods for Estimation and Prediction," these 20 papers cover the latest in statistical methods and computational techniques for complex and high dimensional datasets.

Pietro Mantovan has been Professor of Statistics since 1986 at the University Ca' Foscari of Venezia, Italy, where he has served as coordinator of research units, head of the Departement of Statistics, and Dean of the Faculty of Economics. He has written several articles, monographs and textbooks on classical and Bayesian methods for statistical inference. His recent research interests focus on Bayesian methods for learning and prediction, statistical perturbation models for matrix data, dynamic regression with covariate errors, parallel algorithms for system identification in dynamic models, on line monitoring and forecasting of environmental data, hydrological forecasting uncertainty assessment, and robust inference processes. Piercesare Secchi is Professor of Statistics at MOX since 2005 and Director of the Department of Mathematics at the Politecnico di Milano. He got a Doctorate in Methodological Statistics from the University of Trento in 1992 and a PhDin Statistics from the University of Minnesota in 1995. He has written several papers on stochastic games and on Bayesian nonparametric predictive inference and bootstrap techniques. His present research interests focus on statistical methods for the exploration, classification and analysis of high dimensional data, like functional data or images generated by medical diagnostic devices or by remote sensing. He also works on models for Bayesian inference, in particular those generated by urn schemes, on response adaptive designs of experiments for clinical trials and on biodata mining. He is PI of different projects in applied statistics and coordinator of the Statistical Unit of the Aneurisk project.

Space-time texture analysis in thermal infrared imaging for classification of Raynaud’s Phenomenon.- Mixed-effects modelling of Kevlar fibre failure times through Bayesian non-parametrics.- Space filling and locally optimal designs for Gaussian Universal Kriging.- Exploitation, integration and statistical analysis of the Public Health Database and STEMI Archive in the Lombardia region.- Bootstrap algorithms for variance estimation in ?PS sampling.- Fast Bayesian functional data analysis of basal body temperature.- A parametric Markov chain to model age- and state-dependent wear processes.- Case studies in Bayesian computation using INLA.- A graphical models approach for comparing gene sets.- Predictive densities and prediction limits based on predictive likelihoods.- Computer-intensive conditional inference.- Monte Carlo simulation methods for reliability estimation and failure prognostics.

Erscheinungsdatum
Reihe/Serie Contributions to Statistics
Zusatzinfo X, 164 p.
Verlagsort Milan
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 88-470-5806-6 / 8847058066
ISBN-13 978-88-470-5806-4 / 9788847058064
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Daten importieren, bereinigen, umformen und visualisieren

von Hadley Wickham; Mine Çetinkaya-Rundel …

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 76,85