Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Skew Fields - P. K. Draxl

Skew Fields

(Autor)

Buch | Softcover
196 Seiten
1983
Cambridge University Press (Verlag)
978-0-521-27274-2 (ISBN)
CHF 81,95 inkl. MwSt
The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals.
The book is written in three parts. Part I consists of preparatory work on algebras, needed in Parts II and III. This material is presented in a classical, though unusual, way. Part II consists of a modern description of the theory of Brauer groups over fields (from as elementary a point of view as possible). Part III covers some new developments in the theory which, until now, have not been available except in journals. The principal topic discussed in this section is reduced K,-theory. This book will be of interest to graduate students in pure mathematics and to professional mathematicians.

Preface; Conventions on terminology; Part I. Skew Fields and Simple Rings: 1. Some ad hoc results on skew fields; 2. Rings of matrices over skew fields; 3. Simple rings and Wedderburn's main theorem; 4. A short cut to tensor products; 5. Tensor products and algebras; 6. Tensor products and Galois theory; 7. Skolem-Noether theorem and Centralizer theorem; 8. The corestriction of algebras; Part II. Skew Fields and Brauer Groups: 9. Brauer groups over fields; 10. Cyclic algebras; 11. Power norm residue algebras; 12. Brauer groups and Galois cohomology; 13. The formalism of crossed products; 14. Quaternion algebras; 15. p-Algebras; 16. Skew fields with involution; 17. Brauer groups and K2-theory of fields; 18. A survey of some further results; Part III. Reduced K1-Theory of Skew Fields: 19. The Bruhat normal form; 20. The Dieudonné determinant; 21. The structure of SLn (D) for n ≥ 2; 22. Reduced norms and traces; 23. The reduced Whitehead group SK1 (D) and Wang's theorem; 24. SK1 (D) ≠ 1 for suitable D; Remarks on USK1 (D,I); Bibliography; Thesaurus; Index.

Erscheint lt. Verlag 17.2.1983
Reihe/Serie London Mathematical Society Lecture Note Series
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 152 x 228 mm
Gewicht 285 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-521-27274-2 / 0521272742
ISBN-13 978-0-521-27274-2 / 9780521272742
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich