Introduction to Topology
De Gruyter (Verlag)
978-3-11-037815-3 (ISBN)
Min Yan, HongKong University of Science and Technology, HongKong.
1 Set and Map
1.1 Set
1.2 Map
1.3 Counting
1.4 Equivalence Relation and Quotient
2.Metric Space
2.1 Metric
2.2 Ball
2.3 Open Subset
2.4 Continuity
2.5 Limit Point
2.6 Closed Subset
3.Graph and Network
3.1 Seven Bridges in KSnigsberg
3.2 Proof of One-Trip Criterion
3.3 Euler Formula
3.4 Application of Euler Formula
4 Topology
4.1 Topological Basis and Subbasis
4.2 Open Subset
4.3 Topological Space
4.4 Comparing Topologies
4.5 Limit Point and Closed Subset
4.6 Closure
5 Basic Topological Concepts
5.1 Continuity
5.2 Homeomorphism
5.3 Subspace
5.4 Product
5.5 Quotient
6. Complex
6.1 Simplicial Complex
6.2 CW-Complex
6.3 Projective Space
6.4 Euler Number
7 Topological Properties
7.1 Hausdorff Space
7.2 Connected Space
7.3 Path Connected Space
7.4 Connected Component
7.5 Compact Space
7.6 Limit Point Compact Space
8 Surface
8.1 Manifold
8.2 Surface
8.3 Simplicial Surface
8.4 Planar Diagram
8.5 Cut and Paste
8.6 Classification of Surface
8.7 Recognition of Surface
9 Topics in Point Set Topology
9.1 Normal Space
9.2 Paracompact Space
9.3 Complete Metric Space
9.4 Baire Category Theorem
9.5 Infinite Product
9.6 Space-Filling Curve
9.7 Space of Maps
Erscheinungsdatum | 24.02.2016 |
---|---|
Reihe/Serie | De Gruyter Textbook |
Co-Autor | Higher Education Press Ltd. Comp. |
Zusatzinfo | 155 b/w ill., 100 b/w tbl. |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 434 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | algebraic topology • Einführung • Lehrbuch • Point set theory • Topologie • Topology |
ISBN-10 | 3-11-037815-9 / 3110378159 |
ISBN-13 | 978-3-11-037815-3 / 9783110378153 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich