Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Discovery Science -

Discovery Science

18th International Conference, DS 2015, Banff, AB, Canada, October 4-6, 2015. Proceedings
Buch | Softcover
XV, 342 Seiten
2015 | 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-24281-1 (ISBN)
CHF 74,85 inkl. MwSt
This book constitutes the proceedings of the 17th International Conference on Discovery Science, DS 2015, held in banff, AB, Canada in October 2015. The 16 long and 12 short papers presendted together with 4 invited talks in this volume were carefully reviewed and selected from 44 submissions. The combination of recent advances in the development and analysis of methods for discovering scienti c knowledge, coming from machine learning, data mining, and intelligent data analysis, as well as their application in various scienti c domains, on the one hand, with the algorithmic advances in machine learning theory, on the other hand, makes every instance of this joint event unique and attractive.

Bilinear Predictionusing Low Rank Models.- Finding Hidden Structure in Data with TensorDecompositions.- Turning Prediction Tools Into Decision Tools.- Overcomingobstacles to the adoption of machine learning by domain Experts.- Resolutiontransfer in cancer classification based on amplification patterns.- VeryShort-Term Wind Speed Forecasting using Spatio-Temporal Lazy Learning.- Discoveryof Parameters for Animation of Midge Swarms.- No Sentiment is an Island:Author's activity and sentiments transactions in sentiment classification.- ActiveLearning for Classifying Template Matches in Historical Maps.- An evaluation ofscore descriptors combined with non-linear models of expressive dynamics inmusic.- Geo-Coordinated Parallel Coordinates (GCPC): A Case Study of EnvironmentalData Analysis.- Generalized Shortest Path Kernel on Graphs.- Ensembles ofextremely randomized trees for multi-target regression.- Clustering-BasedOptimised Probabilistic Active Learning (COPAL).- Predictive Analysis onTracking Emails for Targeted Marketing.- Semi-supervised Learning for StreamRecommender Systems.- Detecting Transmembrane Proteins Using Decision Trees.- Changepoint detection for information diffusion tree.- Multi-label Classification viaMulti-target Regression on Data Streams.- Periodical Skeletonization forPartially Periodic Pattern Mining.- Predicting Drugs Adverse Side-Effects usinga recommender-system.- Dr. Inventor Framework: extracting structuredinformation from scientific publications.- Predicting Protein Function andProtein-Ligand Interaction with the 3D Neighborhood Kernel.- HierarchicalMultidimensional Classification of web documents with MultiWebClass.- Evaluatingthe Effectiveness of Hashtags as Predictors of the Sentiment of Tweets.- On theFeasibility of Discovering Meta-Patterns from a Data Ensemble.- An Algorithmfor Influence Maximization in a Two-Terminal Series.- Parallel Graph and ItsApplication to a Real Network.- Benchmarking Stream Clustering for ChurnDetection in Dynamic Networks .- Canonical Correlation Methods for ExploringMicrobe-Environment Interactions in Deep Subsurface.- KeCo: Kernel-based OnlineCo-agreement Algorithm.- Tree PCA for Extracting Dominant Substructures fromLabeled Rooted Trees.- Enumerating Maximal Clique Sets with Pseudo-CliqueConstraint.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo XV, 342 p. 96 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Active learning • Algorithm analysis and problem complexity • Artificial Intelligence • artificial intelligence (incl. robotics) • Biomedical Knowledge Discovery • Clustering • Computer Science • Database Management • Data Mining • data mining and knowledge discovery • data stream mining • Evolving Data and Models • evolving datastreams • Human Computer Interaction • Information storage and retrieval • Kernel Methods • Knowledge Discovery • Learning from text • machine learning • Mining Graphs and Structures Data • Semi-Supervised Learning • spatio-temporal data • stream mining • SVM • Web mining
ISBN-10 3-319-24281-4 / 3319242814
ISBN-13 978-3-319-24281-1 / 9783319242811
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85