Scissors Congruences, Group Homology And Characteristic Classes
Seiten
2001
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-4507-8 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-4507-8 (ISBN)
These lecture notes are based on lectures given at the Nankai Institute of Mathematics in 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: are two Euclidean polyhedra with the same volume "scissors-congruent"?
These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume “scissors-congruent”, i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time.
These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume “scissors-congruent”, i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time.
Introduction and history; scissors congruence group and homology; homology of flag complexes; translational scissors congruences; Euclidean scissors congruences; Sydler's theorem and non-commutative differential forms; spherical scissors congruences; hyperbolic scissors congruences; homology of Lie groups made discrete; invariants; simplices in spherical and hyperbolic 3-space; rigidity of Cheeger-Chern-Simons invariants; projective configurations and homology of the projective linear group; homology of indecomposable configurations; the case of PGI(3,F).
Erscheint lt. Verlag | 1.3.2001 |
---|---|
Reihe/Serie | Nankai Tracts in Mathematics ; 1 |
Mitarbeit |
Herausgeber (Serie): Weiping Zhang |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 981-02-4507-6 / 9810245076 |
ISBN-13 | 978-981-02-4507-8 / 9789810245078 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Nielsen Methods, Covering Spaces, and Hyperbolic Groups
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90