Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Medical Modelling -  Richard Bibb,  Dominic Eggbeer,  Abby Paterson

Medical Modelling (eBook)

The Application of Advanced Design and Rapid Prototyping Techniques in Medicine
eBook Download: PDF | EPUB
2014 | 2. Auflage
516 Seiten
Elsevier Science (Verlag)
978-1-78242-313-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
185,00 inkl. MwSt
(CHF 179,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Medical modelling and the principles of medical imaging, Computer Aided Design (CAD) and Rapid Prototyping (also known as Additive Manufacturing and 3D Printing) are important techniques relating to various disciplines - from biomaterials engineering to surgery. Building on the success of the first edition, Medical Modelling: The application of Advanced Design and Rapid Prototyping techniques in medicine provides readers with a revised edition of the original text, along with key information on innovative imaging techniques, Rapid Prototyping technologies and case studies.Following an overview of medical imaging for Rapid Prototyping, the book goes on to discuss working with medical scan data and techniques for Rapid Prototyping. In this second edition there is an extensive section of peer-reviewed case studies, describing the practical applications of advanced design technologies in surgical, prosthetic, orthotic, dental and research applications. - Covers the steps towards rapid prototyping, from conception (modelling) to manufacture (manufacture) - Includes a comprehensive case studies section on the practical application of computer-aided design (CAD) and rapid prototyping (RP) - Provides an insight into medical imaging for rapid prototyping and working with medical scan data

Prof Richard Bibb is a Professor of Medical Applications of Design at Loughborough University, UK. He graduated from Brunel University, UK (1995) with a BSc (Hons) in Industrial Design. He then ?undertook doctoral research in Rapid Prototyping at the National Centre for Product Design and Development Research (PDR), Cardiff Metropolitan University, UK. This study involved the development of a computerised Rapid Prototyping selection system for designers in small companies. After gaining his PhD in 1999 he established the Medical Applications Group at PDR to conduct collaborative applied research in medical applications of design technologies such as CAD and 3D Printing. He rose to the position of Director of Research ?for PDR before moving to Loughborough University in 2008.? In 2014 he established the Digital Design & Fabrication research lab (DDF) which focuses on ?advanced computer-aided design (CAD), 3D ?Printing and Additive Manufacturing technologies. Professor Bibb's personal research focus is the application of advanced product design and development ?technologies in medicine, surgery, rehabilitation and assistive technology.
Medical modelling and the principles of medical imaging, Computer Aided Design (CAD) and Rapid Prototyping (also known as Additive Manufacturing and 3D Printing) are important techniques relating to various disciplines - from biomaterials engineering to surgery. Building on the success of the first edition, Medical Modelling: The application of Advanced Design and Rapid Prototyping techniques in medicine provides readers with a revised edition of the original text, along with key information on innovative imaging techniques, Rapid Prototyping technologies and case studies.Following an overview of medical imaging for Rapid Prototyping, the book goes on to discuss working with medical scan data and techniques for Rapid Prototyping. In this second edition there is an extensive section of peer-reviewed case studies, describing the practical applications of advanced design technologies in surgical, prosthetic, orthotic, dental and research applications. - Covers the steps towards rapid prototyping, from conception (modelling) to manufacture (manufacture)- Includes a comprehensive case studies section on the practical application of computer-aided design (CAD) and rapid prototyping (RP)- Provides an insight into medical imaging for rapid prototyping and working with medical scan data

Front Cover 1
Front Matter 4
Contents 6
Woodhead Publishing Series in Biomaterials 10
Preface 14
Acknowledgements 16
1 - Introduction 18
1.1 Background 18
1.2 The human form 19
1.3 Basic anatomical terminology 20
1.4 Technical terminology 22
2 - Medical imaging 24
2.1 Introduction to medical imaging 24
2.2 Computed tomography (CT) 25
2.3 Cone beam CT (CBCT) 34
2.4 Magnetic resonance (MR) 37
2.5 Noncontact surface scanning 41
2.6 Medical scan data 47
2.7 Point cloud data 49
2.8 Media 49
References 50
Recommended reading 50
3 - Working with medical scan data 52
3.1 Pixel data operations 52
3.2 Using CT data: a worked example 56
3.3 Point cloud data operations 61
3.4 Two-dimensional formats 65
3.5 Pseudo 3D formats 65
3.6 True 3D formats 68
3.7 File management and exchange 75
4 - Physical reproduction 82
4.1 Background to rapid prototyping 82
4.2 Stereolithography 92
4.3 Digital light processing 96
4.4 Fused deposition modelling 98
4.5 Laser sintering 101
4.6 Powder bed 3D printing 103
4.7 Material jetting technology 105
4.8 Laminated object manufacture 110
4.9 Computer numerical controlled machining 110
4.10 Cleaning and sterilising medical models 112
5 - Case Studies 116
Introduction 116
Implementation 118
Acknowledgements 118
5.1.1 Introduction 118
5.1.2 CT guidelines for medical modelling 120
5.1.3 Conclusion 124
Acknowledgements 124
References 125
5.2 Implementation case study 2: the development of a collaborative medical modelling service – organisational and technical con... 127
Acknowledgements 127
5.2.1 Introduction 127
5.2.2 Aims of medical modelling collaboration 128
5.2.3 Implementation 129
5.2.4 Discussion 132
5.2.5 Conclusions 135
5.2.6 Update 136
References 136
5.3 Implementation case study 3: medical rapid prototyping technologies – state of the art and current limitations for applicati... 137
Acknowledgements 137
5.3.1 Introduction 137
5.3.2 3D image acquisition and processing for MRP 138
5.3.3 RP technologies 139
5.3.4 Medical rapid prototyped model artefacts 142
5.3.5 Conclusion 149
5.3.6 Update 150
References 150
Surgical applications 154
5.4 Surgical applications case study 1: planning osseointegrated implants using computer-aided design and rapid prototyping 154
Acknowledgments 154
5.4.1 Introduction 154
5.4.2 Proposed approach 155
5.4.3 Scanning problems 155
5.4.4 Software problems 156
5.4.5 Illustrative case study 157
5.4.6 Results 159
5.4.7 Benefits and future development 160
5.4.8 Update 161
References 161
5.5 Surgical applications case study 2: rapid manufacture of custom-fit surgical guides 162
Acknowledgments 162
5.5.1 Introduction 162
5.5.2 Methods 163
5.5.3 Case study 165
5.5.4 Results 167
5.5.5 Discussion 168
5.5.6 Conclusions 168
5.5.7 Update 169
References 170
5.6 Surgical applications case study 3: use of a reconstructed three-dimensional solid model from computed tomography to aid in ... 172
Acknowledgments 172
5.6.1 Introduction 172
5.6.2 Materials and methods 172
5.6.3 Postoperative management and follow-up 175
5.6.4 Discussion 175
References 176
5.7 Surgical applications case study 4: custom-made titanium orbital floor prosthesis in reconstruction for orbital floor fractu... 177
Acknowledgments 177
5.7.1 Introduction 177
5.7.2 Technique 178
5.7.3 Case report 179
5.7.4 Conclusion 182
References 182
5.8 Surgical applications case study 5: use of three-dimensional technology in the multidisciplinary management of facial dispro... 184
Acknowledgments 184
5.8.1 Introduction 184
5.8.2 Materials and methods 184
5.8.3 Results 186
5.8.4 Discussion 188
References 188
5.9 Surgical applications case study 6: appropriate approach to computer-aided design and manufacture of reconstructive implants... 190
Acknowledgments 190
5.9.1 Introduction 190
5.9.2 Case 1: orbital rim augmentation implant 190
5.9.3 Case 2: orbital floor implant incorporating placement guide 195
5.9.3.1 Materials and methods 196
5.9.4 Case 3: multipart reconstruction 199
5.9.4.1 Materials and methods 199
5.9.5 Case 4: posttraumatic zygomatic osteotomy and orbital floor reconstruction 203
References 209
5.10 Surgical applications case study 7: computer-aided planning and additive manufacture for complex, mid-face osteotomies 211
Acknowledgments 211
5.10.1 Introduction 211
5.10.2 Methods 212
5.10.3 Results 215
5.10.4 Discussion 216
5.10.5 Conclusions 217
References 217
Maxillofacial rehabilitation 218
Acknowledgments 218
5.11.1 Introduction 218
5.11.2 Methods 219
5.11.3 Results 223
5.11.4 Update 224
References 224
5.12 Maxillofacial rehabilitation case study 2: producing burns therapy conformers using noncontact scanning and rapid prototyp... 225
Acknowledgements 225
5.12.1 Introduction 225
5.12.2 Methods 226
5.12.3 Results 230
5.12.4 Discussion 231
5.12.5 Conclusions 231
References 232
5.13 Maxillofacial rehabilitation case study 3: an appropriate approach to computer-aided design and manufacture of cranioplas... 233
Acknowledgements 233
5.13.1 Introduction 233
5.13.2 Initial case 234
5.13.3 Second case 239
5.13.4 Third case: press tool design 240
5.13.5 Fourth case: implant design for AM fabrication 242
5.13.6 Future development and benefits 243
References 244
5.14 Maxillofacial rehabilitation case study 4: evaluation of advanced technologies in the design and manufacture of an implant ... 245
Acknowledgements 245
5.14.1 Introduction 245
5.14.2 Existing facial prosthetics technique 246
5.14.3 Review of advanced technologies in facial prosthetics 246
5.14.4 Case 1 248
5.14.5 Case 2 250
5.14.6 Results 254
5.14.7 Discussion 254
5.14.8 Conclusions 255
References 256
5.15 Maxillofacial rehabilitation case study 5: rapid prototyping technologies in soft-tissue facial prosthetics – current state... 258
Acknowledgements 258
5.15.1 Introduction 258
5.15.2 Methodology 259
5.15.3 Summary of case studies 260
5.15.4 Discussion 265
5.15.5 RP& M Specification
5.15.6 Conclusions 270
References 271
5.16 Maxillofacial rehabilitation case study 6: evaluation of direct and indirect additive manufacture of maxillofacial prosthes... 273
Acknowledgements 273
5.16.1 Introduction 273
5.16.2 Methods 274
5.16.3 Results 283
5.16.4 Discussion 286
5.16.5 Conclusions 287
References 288
5.17 Maxillofacial rehabilitation case study 7: computer-aided methods in bespoke breast prosthesis design and fabrication 290
Acknowledgements 290
5.17.1 Introduction 290
5.17.2 Methods 291
5.17.3 Discussion 298
5.17.4 Conclusions 298
References 299
Orthotic rehabilitation applications 300
Acknowledgements 300
5.18.1 Introduction 300
5.18.2 Data acquisition methods 301
5.18.3 Conclusion and future work 306
Acknowledgements 308
References 308
5.19 Orthotic rehabilitation applications case study 2: comparison of additive manufacturing systems for the design and fabric... 311
Acknowledgements 311
5.19.1 Introduction 311
5.19.2 Aim and objectives 316
5.19.3 Method 316
5.19.4 Results 321
5.19.5 Conclusions and future work 330
Acknowledgements 333
References 333
5.20 Orthotic rehabilitation applications case study 3: evaluation of a digitised splinting approach with multiple-material func... 336
Acknowledgements 336
5.20.1 Introduction 336
5.20.2 Research aim and objectives 339
5.20.3 Methods 340
5.20.4 Results and discussion 347
5.20.5 Future work 348
Acknowledgements 349
References 349
5.21 Orthotic rehabilitation applications case study 4: digitisation of the splinting process – development of a CAD strategy fo... 352
Acknowledgements 352
5.21.1 Introduction 352
5.21.2 Current splinting techniques 353
5.21.3 Experimental procedures 355
5.21.4 Results 357
5.21.5 Conclusion 359
Acknowledgements 360
References 360
5.22 Orthotic rehabilitation applications case study 5: evaluation of a refined 3D CAD workflow for upper extremity splint desig... 361
Acknowledgements 361
5.22.1 Introduction 361
5.22.2 Method 363
5.22.3 Results and discussion 366
5.22.4 Conclusions and further work 366
Acknowledgements 367
References 367
Dental applications 370
5.23 Dental applications case study 1: the computer-aided design and rapid prototyping fabrication of removable partial denture ... 370
Acknowledgments 370
5.23.1 Introduction 370
5.23.2 Materials and methods 371
5.23.3 Conclusions 379
References 380
5.24 Dental applications case study 2: trial fitting of an RDP framework made using CAD and RP techniques 381
Acknowledgments 381
5.24.1 Introduction 381
5.24.2 Methods 381
5.24.3 Results 385
5.24.4 Discussion 386
5.24.5 Conclusions 387
Acknowledgments 387
References 387
5.25 Dental applications case study 3: direct additive manufacture of RPD frameworks 388
Acknowledgments 388
5.25.1 Introduction 388
5.25.2 Methodology 388
5.25.3 Results 392
5.25.4 Discussion 394
5.25.5 Conclusions 395
References 396
5.26 Dental applications case study 4: a comparison of plaster, digital and reconstructed study model accuracy 397
Acknowledgments 397
5.26.1 Introduction 397
5.26.2 Materials and methods 399
5.26.3 Results 403
5.26.4 Discussion 403
5.26.5 Conclusions 411
5.26.6 Future work 412
5.26.7 Contributors 412
References 412
5.27 Dental applications case study 5: design and fabrication of a sleep apnoea device using CAD/AM technologies 418
Acknowledgments 418
5.27.1 Introduction 418
5.27.2 Methods and materials 419
5.27.3 Results 424
5.27.4 Discussion 424
5.27.5 Conclusion 425
References 425
5.28 Dental applications case study 6: computer-aided design, CAM and AM applications in the manufacture of dental appliances 427
Acknowledgments 427
5.28.1 Introduction 427
5.28.2 Material and methods 428
5.28.3 Results 434
5.28.4 Discussion 434
5.28.5 Conclusion 435
References 435
Research applications 436
Acknowledgements 436
5.29.1 Introduction 436
5.29.2 Human sample data 437
5.29.3 The use of stereolithography in the study of cancellous bone 437
5.29.4 Single human bone sample (approximate 45-mm cube) 437
5.29.5 Multiple human samples (approximate 50-mm cube) 440
5.29.6 Conclusion 442
5.29.7 Software 443
Reference 443
Acknowledgements 444
5.30.1 Introduction 444
5.30.2 Definition of skin texture 445
5.30.3 Identification of suitable technologies 446
5.30.4 Methods 448
5.30.5 Case studies 448
5.30.6 Results 453
5.30.7 Discussion 453
5.30.8 Conclusions 454
References 454
Acknowledgements 456
5.31.1 Introduction 456
5.31.2 Materials and methods 458
5.31.3 Results 459
5.31.4 Discussion 464
5.31.5 Conclusions 465
Acknowledgements 465
Manufacturer contact details 465
References 465
5.32 Research applications case study 4: producing physical models from computed tomography scans of ancient Egyptian mummies 467
Acknowledgements 467
5.32.1 Introduction 467
5.32.2 Technology 468
5.32.3 Case studies 469
5.32.4 Conclusions 473
References 474
Acknowledgements 475
5.33.1 Introduction 475
5.33.2 Materials and methods 476
5.33.3 Discussion and conclusions 480
Acknowledgements 482
5.34.1 Introduction 482
5.34.2 Methods 483
5.34.3 Results 485
5.34.4 Discussion 486
References 488
6 - Future developments 490
6.1 Background 490
6.2 Scanning techniques 490
6.3 Data fusion 491
6.4 Rapid prototyping 491
6.5 Tissue engineering 492
Glossary and explanatory notes 494
Bibliography 498
Further reading on anatomy 498
Further reading on maxillofacial surgery and prosthetics 498
Further reading on computer-aided design and rapid prototyping 499
Further reading on splinting 499
Publications by the authors 499
Company contacts 503
Index 504

Woodhead Publishing Series in Biomaterials


1 Sterilisation of tissues using ionising radiations
Edited by J. F. Kennedy, G. O. Phillips and P. A. Williams
2 Surfaces and interfaces for biomaterials
Edited by P. Vadgama
3 Molecular interfacial phenomena of polymers and biopolymers
Edited by C. Chen
4 Biomaterials, artificial organs and tissue engineering
Edited by L. Hench and J. Jones
5 Medical modelling
R. Bibb
6 Artificial cells, cell engineering and therapy
Edited by S. Prakash
7 Biomedical polymers
Edited by M. Jenkins
8 Tissue engineering using ceramics and polymers
Edited by A. R. Boccaccini and J. Gough
9 Bioceramics and their clinical applications
Edited by T. Kokubo
10 Dental biomaterials
Edited by R. V. Curtis and T. F. Watson
11 Joint replacement technology
Edited by P. A. Revell
12 Natural-based polymers for biomedical applications
Edited by R. L. Reiss et al
13 Degradation rate of bioresorbable materials
Edited by F. J. Buchanan
14 Orthopaedic bone cements
Edited by S. Deb
15 Shape memory alloys for biomedical applications
Edited by T. Yoneyama and S. Miyazaki
16 Cellular response to biomaterials
Edited by L. Di Silvio
17 Biomaterials for treating skin loss
Edited by D. P. Orgill and C. Blanco
18 Biomaterials and tissue engineering in urology
Edited by J. Denstedt and A. Atala
19 Materials science for dentistry
B. W. Darvell
20 Bone repair biomaterials
Edited by J. A. Planell, S. M. Best, D. Lacroix and A. Merolli
21 Biomedical composites
Edited by L. Ambrosio
22 Drug–device combination products
Edited by A. Lewis
23 Biomaterials and regenerative medicine in ophthalmology
Edited by T. V. Chirila
24 Regenerative medicine and biomaterials for the repair of connective tissues
Edited by C. Archer and J. Ralphs
25 Metals for biomedical devices
Edited by M. Ninomi
26 Biointegration of medical implant materials: Science and design
Edited by C. P. Sharma
27 Biomaterials and devices for the circulatory system
Edited by T. Gourlay and R. Black
28 Surface modification of biomaterials: Methods analysis and applications
Edited by R. Williams
29 Biomaterials for artificial organs
Edited by M. Lysaght and T. Webster
30 Injectable biomaterials: Science and applications
Edited by B. Vernon
31 Biomedical hydrogels: Biochemistry, manufacture and medical applications
Edited by S. Rimmer
32 Preprosthetic and maxillofacial surgery: Biomaterials, bone grafting and tissue engineering
Edited by J. Ferri and E. Hunziker
33 Bioactive materials in medicine: Design and applications
Edited by X. Zhao, J. M. Courtney and H. Qian
34 Advanced wound repair therapies
Edited by D. Farrar
35 Electrospinning for tissue regeneration
Edited by L. Bosworth and S. Downes
36 Bioactive glasses: Materials, properties and applications
Edited by H. O. Ylänen
37 Coatings for biomedical applications
Edited by M. Driver
38 Progenitor and stem cell technologies and therapies
Edited by A. Atala
39 Biomaterials for spinal surgery
Edited by L. Ambrosio and E. Tanner
40 Minimized cardiopulmonary bypass techniques and technologies
Edited by T. Gourlay and S. Gunaydin
41 Wear of orthopaedic implants and artificial joints
Edited by S. Affatato
42 Biomaterials in plastic surgery: Breast implants
Edited by W. Peters, H. Brandon, K. L. Jerina, C. Wolf and V. L. Young
43 MEMS for biomedical applications
Edited by S. Bhansali and A. Vasudev
44 Durability and reliability of medical polymers
Edited by M. Jenkins and A. Stamboulis
45 Biosensors for medical applications
Edited by S. Higson
46 Sterilisation of biomaterials and medical devices
Edited by S. Lerouge and A. Simmons
47 The hip resurfacing handbook: A practical guide to the use and management of modern hip resurfacings
Edited by K. De Smet, P. Campbell and C. Van Der Straeten
48 Developments in tissue engineered and regenerative medicine products
J. Basu and J. W. Ludlow
49 Nanomedicine: Technologies and applications
Edited by T. J. Webster
50 Biocompatibility and performance of medical devices
Edited by J-P. Boutrand
51 Medical robotics: Minimally invasive surgery
Edited by P. Gomes
52 Implantable sensor systems for medical applications
Edited by A. Inmann and D. Hodgins
53 Non-metallic biomaterials for tooth repair and replacement
Edited by P. Vallittu
54 Joining and assembly of medical materials and devices
Edited by Y. (Norman) Zhou and M. D. Breyen
55 Diamond-based materials for biomedical applications
Edited by R. Narayan
56 Nanomaterials in tissue engineering: Fabrication and applications
Edited by A. K. Gaharwar, S. Sant, M. J. Hancock and S. A. Hacking
57 Biomimetic biomaterials: Structure and applications
Edited by A. J. Ruys
58 Standardisation in cell and tissue engineering: Methods and protocols
Edited by V. Salih
59 Inhaler devices: Fundamentals, design and drug delivery
Edited by P. Prokopovich
60 Bio-tribocorrosion in biomaterials and medical implants
Edited by Y. Yan
61 Microfluidic devices for biomedical applications
Edited by X-J. James Li and Y. Zhou
62 Decontamination in hospitals and healthcare
Edited by J. T. Walker
63 Biomedical imaging: Applications and advances
Edited by P. Morris
64 Characterization of biomaterials
Edited by M. Jaffe, W. Hammond, P. Tolias and T. Arinzeh
65 Biomaterials and medical tribology
Edited by J. Paolo Davim
66 Biomaterials for cancer therapeutics: Diagnosis, prevention and therapy
Edited by K. Park
67 New functional biomaterials for medicine and healthcare
E. P. Ivanova, K. Bazaka and R. J. Crawford
68 Porous silicon for biomedical applications
Edited by H. A. Santos
69 A practical approach to spinal trauma
Edited by H. N. Bajaj and S. Katoch
70 Rapid prototyping of biomaterials: Principles and applications
Edited by R. Narayan
71 Cardiac regeneration and repair Volume 1: Pathology and therapies
Edited by R-K. Li and R. D....

PDFPDF (Adobe DRM)
Größe: 42,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 31,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
CHF 107,45

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
CHF 107,45