Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introduction to Combinatorics -  Gerald Berman,  K. D. Fryer

Introduction to Combinatorics (eBook)

eBook Download: PDF
2014 | 1. Auflage
314 Seiten
Elsevier Science (Verlag)
978-1-4832-7382-2 (ISBN)
Systemvoraussetzungen
54,95 inkl. MwSt
(CHF 53,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Introduction to Combinatorics focuses on the applications, processes, methodologies, and approaches involved in combinatorics or discrete mathematics. The book first offers information on introductory examples, permutations and combinations, and the inclusion-exclusion principle. Discussions focus on some applications of the inclusion-exclusion principle, derangements, calculus of sets, permutations, combinations, Stirling's formula, binomial theorem, regions of a plane, chromatic polynomials, and a random walk. The text then examines linear equations with unit coefficients, recurrence relations, and generating functions. Topics include derivatives and differential equations, solution of difference equations by means of generating functions, recurrence relations, summation method, difference methods, combinations with repetitions, solutions bounded below, and solutions bounded above and below. The publication takes a look at generating functions and difference equations, ramifications of the binomial theorem, finite structures, coloring problems, maps on a sphere, and geometry of the plane. The manuscript is a valuable reference for researchers interested in combinatorics.
Introduction to Combinatorics focuses on the applications, processes, methodologies, and approaches involved in combinatorics or discrete mathematics. The book first offers information on introductory examples, permutations and combinations, and the inclusion-exclusion principle. Discussions focus on some applications of the inclusion-exclusion principle, derangements, calculus of sets, permutations, combinations, Stirling's formula, binomial theorem, regions of a plane, chromatic polynomials, and a random walk. The text then examines linear equations with unit coefficients, recurrence relations, and generating functions. Topics include derivatives and differential equations, solution of difference equations by means of generating functions, recurrence relations, summation method, difference methods, combinations with repetitions, solutions bounded below, and solutions bounded above and below. The publication takes a look at generating functions and difference equations, ramifications of the binomial theorem, finite structures, coloring problems, maps on a sphere, and geometry of the plane. The manuscript is a valuable reference for researchers interested in combinatorics.

Front Cover 1
Introduction to Combinatorics 4
Copyright Page 5
Table of Contents 6
Preface 10
Acknowledgments 14
Chapter 1. Introductory Examples 16
1.1 A Simple Enumeration Problem 16
1.2 Regions of a Plane 23
1.3 Counting Labeled Trees 28
1.4 Chromatic Polynomials 32
1.5 Counting Hairs 37
1.6 Evaluating Polynomials 38
1.7 A Random Walk 42
Part I: ENUMERATION 46
Chapter 2. Permutations and Combinations 48
2.1 Permutations 50
2.2 r-Arrangements 53
2.3 Combinations 57
2.4 The Binomial Theorem 60
2.5 The Binomial Coefficients 63
2.6 The Multinomial Theorem 71
2.7 Stirling's Formula 73
Chapter 3. The Inclusion–Exclusion Principle 75
3.1 A Calculus of Sets 75
3.2 The Inclusion–Exclusion Principle 79
3.3 Some Applications of the Inclusion–Exclusion Principle 82
3.4 Derangements 85
Chapter 4. Linear Equations with Unit Coefficients 88
4.1 Solutions Bounded Below 88
4.2 Solutions Bounded Above and Below 93
4.3 Combinations with Repetitions 97
Chapter 5. Recurrence Relations 99
5.1 Recurrence Relations 99
5.2 Solution by Iteration 102
5.3 Difference Methods 105
5.4 A Fibonacci Sequence 109
5.5 A Summation Method 111
5.6 Chromatic Polynomials 111
Chapter 6. Generating Functions 124
6.1 Some Simple Examples 124
6.2 The Solution of Difference Equations by Means of Generating Functions 127
6.3 Some Combinatorial Identities 131
6.4 Additional Examples 133
6.5 Derivatives and Differential Equations 136
Part II: EXISTENCE 142
Chapter 7. Some Methods of Proof 144
7.1 Existence by Construction 144
7.2 The Method of Exhaustion 147
7.3 The Dirichlet Drawer Principle 151
7.4 The Method of Contradiction 153
Chapter 8. Geometry of the Plane 155
8.1 Convex Sets 155
8.2 Tiling a Rectangle 157
8.3 Tessellations of the Plane 162
8.4 Some Equivalence Classes 167
Chapter 9. Maps on a Sphere 170
9.1 Euler's Formula 171
9.2 Regular Maps in the Plane 176
9.3 Platonic Solids 178
Chapter 10. Coloring Problems 179
10.1 The Four Color Problem 179
10.2 Coloring Graphs 182
10.3 More about Chromatic Polynomials 183
10.4 Chromatic Triangles 189
10.5 Sperner's Lemma 190
Chapter 11. Finite Structures 195
11.1 Finite Fields 195
11.2 The Fano Plane 201
11.3 Coordinate Geometry 204
11.4 Projective Configurations 208
Part III: APPLICATIONS 212
Chapter 12. Probability 214
12.1 Combinatorial Probability 215
12.2 Ultimate Sets 219
Chapter 13. Ramifications of the Binomial Theorem 223
13.1 Arithmetic Power Series 223
13.2 The Binomial Distribution 227
13.3 Distribution of Objects into Boxes 229
13.4 Stirling Numbers 231
13.5 Gaussian Binomial Coefficients 233
Chapter 14. More Generating Functions and Difference Equations 241
14.1 The Partition of Integers 241
14.2 Triangulation of Convex Polygons 245
14.3 Random Walks 248
14.4 A Class of Difference Equations 254
Chapter 15. Fibonacci Sequences 257
15.1 Representations of Fibonacci Sequences 257
15.2 Diagonal Sums of the Pascal Triangle 260
15.3 Sequences of Plus and Minus Signs 261
15.4 Counting Hares 264
15.5 Maximum or Minimum of a Unimodal Function 265
Chapter 16. Arrangements 272
16.1 Systems of Distinct Representatives 273
16.2 Latin Squares 275
16.3 The Kirkman Schoolgirl Problem 278
16.4 Balanced Incomplete Block Designs 280
16.5 Difference Sets 283
16.6 Magic Squares 286
16.7 Room Squares 288
Answers to Selected Exercises 292
Index 308

Erscheint lt. Verlag 10.5.2014
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Technik
ISBN-10 1-4832-7382-2 / 1483273822
ISBN-13 978-1-4832-7382-2 / 9781483273822
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 13,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 16,60
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

eBook Download (2024)
De Gruyter (Verlag)
CHF 73,20