Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Privacy-Preserving Machine Learning for Speech Processing - Manas A. Pathak

Privacy-Preserving Machine Learning for Speech Processing

(Autor)

Buch | Softcover
142 Seiten
2014
Springer-Verlag New York Inc.
978-1-4899-9120-1 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This thesis discusses the privacy issues in speech-based applications such as biometric authentication, surveillance, and external speech processing services. Pathak presents solutions for privacy-preserving speech processing applications such as speaker verification, speaker identification and speech recognition.
This thesis discusses the privacy issues in speech-based applications such as biometric authentication, surveillance, and external speech processing services. Author Manas A. Pathak presents solutions for privacy-preserving speech processing applications such as speaker verification, speaker identification and speech recognition.

The author also introduces some of the tools from cryptography and machine learning and current techniques for improving the efficiency and scalability of the presented solutions. Experiments with prototype implementations of the solutions for execution time and accuracy on standardized speech datasets are also included in the text. Using the framework proposed  may now make it possible for a surveillance agency to listen for a known terrorist without being able to hear conversation from non-targeted, innocent civilians.

Dr. Manas A. Pathak received the BTech degree in computer science from Visvesvaraya National Institute of Technology, Nagpur, India, in 2006, and the MS and PhD degrees from the Language Technologies Institute at Carnegie Mellon University (CMU) in 2009 and 2012 respectively. He is currently working as a research scientist at Adchemy, Inc. His research interests include intersection of data privacy, machine learning, speech processing.

Thesis Overview.- Speech Processing Background.- Privacy Background.- Overview of Speaker Verification with Privacy.- Privacy-Preserving Speaker Verification Using Gaussian Mixture Models.- Privacy-Preserving Speaker Verification as String Comparison.- Overview of Speaker Indentification with Privacy.- Privacy-Preserving Speaker Identification Using Gausian Mixture Models.- Privacy-Preserving Speaker Identification as String Comparison.- Overview of Speech Recognition with Privacy.- Privacy-Preserving Isolated-Word Recognition.- Thesis Conclusion.- Future Work.- Differentially Private Gaussian Mixture Models.

Reihe/Serie Springer Theses
Zusatzinfo XVIII, 142 p.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Nachrichtentechnik
Schlagworte homomorphic encryption • Locality Sensitive Hashing • Secure Multiparty Computation • speaker identification • speaker verification • Speech Recognition
ISBN-10 1-4899-9120-4 / 1489991204
ISBN-13 978-1-4899-9120-1 / 9781489991201
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15