Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hadoop 2 Quick-Start Guide - Douglas Eadline

Hadoop 2 Quick-Start Guide

Learn the Essentials of Big Data Computing in the Apache Hadoop 2 Ecosystem

(Autor)

Buch | Softcover
304 Seiten
2015
Addison Wesley (Verlag)
978-0-13-404994-6 (ISBN)
CHF 61,30 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Get Started Fast with Apache Hadoop® 2, YARN, and Today’s Hadoop Ecosystem

 



With Hadoop 2.x and YARN, Hadoop moves beyond MapReduce to become practical for virtually any type of data processing. Hadoop 2.x and the Data Lake concept represent a radical shift away from conventional approaches to data usage and storage. Hadoop 2.x installations offer unmatched scalability and breakthrough extensibility that supports new and existing Big Data analytics processing methods and models.

 

Hadoop® 2 Quick-Start Guide is the first easy, accessible guide to Apache Hadoop 2.x, YARN, and the modern Hadoop ecosystem. Building on his unsurpassed experience teaching Hadoop and Big Data, author Douglas Eadline covers all the basics you need to know to install and use Hadoop 2 on personal computers or servers, and to navigate the powerful technologies that complement it.

 

Eadline concisely introduces and explains every key Hadoop 2 concept, tool, and service, illustrating each with a simple “beginning-to-end” example and identifying trustworthy, up-to-date resources for learning more.

 

This guide is ideal if you want to learn about Hadoop 2 without getting mired in technical details. Douglas Eadline will bring you up to speed quickly, whether you’re a user, admin, devops specialist, programmer, architect, analyst, or data scientist.

 

Coverage Includes



Understanding what Hadoop 2 and YARN do, and how they improve on Hadoop 1 with MapReduce
Understanding Hadoop-based Data Lakes versus RDBMS Data Warehouses
Installing Hadoop 2 and core services on Linux machines, virtualized sandboxes, or clusters
Exploring the Hadoop Distributed File System (HDFS)
Understanding the essentials of MapReduce and YARN application programming
Simplifying programming and data movement with Apache Pig, Hive, Sqoop, Flume, Oozie, and HBase
Observing application progress, controlling jobs, and managing workflows
Managing Hadoop efficiently with Apache Ambari–including recipes for HDFS to NFSv3 gateway, HDFS snapshots, and YARN configuration
Learning basic Hadoop 2 troubleshooting, and installing Apache Hue and Apache Spark

 

Douglas Eadline began his career as a practitioner and a chronicler of the Linux cluster HPC revolution and now documents Big Data analytics. Starting with the first Beowulf Cluster how-to document, Doug has written hundreds of articles, white papers, and instructional documents covering virtually all aspects of High Performance Computing (HPC). Prior to starting and editing the popular ClusterMonkey.net website in 2005, he served as editor-in-chief for ClusterWorld Magazine, and was senior HPC editor for Linux Magazine. Currently, he is a writer and consultant to the HPC/Data Analytics industry and leader of the Limulus Personal Cluster Project ( limulus.basement-supercomputing.com). He authored Hadoop Fundamentals LiveLessons, Second Edition (2015), and Apache Hadoop YARN LiveLessons (2014), and is coauthor of Apache Hadoop™ YARN (2014), all from Addison-Wesley.  

Foreword         xi

Preface          xiii

Acknowledgments         xix

About the Author          xxi



 

Chapter 1: Background and Concepts         1

Defining Apache Hadoop  1

A Brief History of Apache Hadoop  3

Defining Big Data  4

Hadoop as a Data Lake  5

Using Hadoop: Administrator, User, or Both  6

First There Was MapReduce  7

Moving Beyond MapReduce with Hadoop V2   13

The Apache Hadoop Project Ecosystem   15

Summary and Additional Resources   18

 

Chapter 2: Installation Recipes         19

Core Hadoop Services   19

Planning Your Resources   21

Installing on a Desktop or Laptop   23

Installing Hadoop with Ambari   40

Installing Hadoop in the Cloud Using Apache Whirr   56

Summary and Additional Resources   62

 

Chapter 3: Hadoop Distributed File System Basics          63

Hadoop Distributed File System Design Features   63

HDFS Components   64

HDFS User Commands   72

HDFS Web GUI   77

Using HDFS in Programs   77

Summary and Additional Resources   83

 

Chapter 4: Running Example Programs and Benchmarks          85

Running MapReduce Examples   85

Running Basic Hadoop Benchmarks   95

Summary and Additional Resources   98

 

Chapter 5: Hadoop MapReduce Framework         101

The MapReduce Model   101

MapReduce Parallel Data Flow   104

Fault Tolerance and Speculative Execution   107

Summary and Additional Resources   109

 

Chapter 6: MapReduce Programming          111

Compiling and Running the Hadoop WordCount Example   111

Using the Streaming Interface   116

Using the Pipes Interface   119

Compiling and Running the Hadoop Grep Chaining Example   121

Debugging MapReduce   124

Summary and Additional Resources   128

 

Chapter 7: Essential Hadoop Tools         131

Using Apache Pig   131

Using Apache Hive   134

Using Apache Sqoop to Acquire Relational Data   139

Using Apache Flume to Acquire Data Streams   148

Manage Hadoop Workflows with Apache Oozie   154

Using Apache HBase   163

Summary and Additional Resources   169

 

Chapter 8: Hadoop YARN Applications          171

YARN Distributed-Shell   171

Using the YARN Distributed-Shell   172

Structure of YARN Applications   178

YARN Application Frameworks   179

Summary and Additional Resources   184

 

Chapter 9: Managing Hadoop with Apache Ambari          185

Quick Tour of Apache Ambari   186

Managing Hadoop Services   194

Changing Hadoop Properties   198

Summary and Additional Resources   204

 

Chapter 10: Basic Hadoop Administration Procedures           205

Basic Hadoop YARN Administration   206

Basic HDFS Administration   208

Capacity Scheduler Background   220

Hadoop Version 2 MapReduce Compatibility   222

Summary and Additional Resources   225

 



Appendix A: Book Webpage and Code Download          227

 

Appendix B: Getting Started Flowchart and Troubleshooting Guide         229



Getting Started Flowchart   229

General Hadoop Troubleshooting Guide   229

 

Appendix C: Summary of Apache Hadoop Resources by Topic          243

General Hadoop Information   243

Hadoop Installation Recipes   243

HDFS   244

Examples   244

MapReduce   245

MapReduce Programming   245

Essential Tools   245

YARN Application Frameworks   246

Ambari Administration   246

Basic Hadoop Administration   247

 

Appendix D: Installing the Hue Hadoop GUI         249

Hue Installation   249

Starting Hue   253

Hue User Interface   253

 

Appendix E: Installing Apache Spark         257

Spark Installation on a Cluster   257

Starting Spark across the Cluster   258

Installing and Starting Spark on the Pseudo-distributed Single-Node Installation   260

Run Spark Examples   260

 

Index         261

 

Erscheint lt. Verlag 5.11.2015
Verlagsort Boston
Sprache englisch
Maße 180 x 230 mm
Gewicht 520 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Software Entwicklung
Mathematik / Informatik Informatik Web / Internet
ISBN-10 0-13-404994-2 / 0134049942
ISBN-13 978-0-13-404994-6 / 9780134049946
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85