Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Practical Machine Learning - Ted Dunning, Ellen Friedman

Practical Machine Learning

A New Look at Anomaly Detection
Buch | Softcover
66 Seiten
2014
O'Reilly Media (Verlag)
978-1-4919-1160-0 (ISBN)
CHF 27,50 inkl. MwSt
This O'Reilly report uses practical example to explain how the underlying concepts of anomaly detection work.
Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work.

From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data.

The concepts described in this report will help you tackle anomaly detection in your own project.
  • Use probabilistic models to predict what’s normal and contrast that to what you observe
  • Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm
  • Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model
  • Use historical data to discover anomalies in sporadic event streams, such as web traffic
  • Learn how to use deviations in expected behavior to trigger fraud alerts

Ted Dunning is Chief Applications Architect at MapR Technologies and committer and PMC member of the Apache Mahout, Apache ZooKeeper, and Apache Drill projects and mentor for these Apache projects: Spark, Storm, Stratosphere, and Datafu. He contributed to Mahout clustering, classification, and matrix decomposition algorithms and helped expand the new version of Mahout Math library. Ted was the chief architect behind the MusicMatch (now Yahoo Music) and Veoh recommendation systems, built fraud-detection systems for ID Analytics (LifeLock), and has issued 24 patents to date. Ted has a PhD in computing science from University of Sheffield. When he's not doing data science, he plays guitar and mandolin.

Ellen Friedman is a consultant and commentator, currently writing mainly about big data topics. She is a committer for the Apache Mahout project and a contributor to the Apache Drill project. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics including molecular biology, nontraditional inheritance, and oceanography. Ellen is also co-author of a book of magic-themed cartoons, A Rabbit Under the Hat. Ellen is on Twitter at @Ellen_Friedman.

Erscheint lt. Verlag 30.9.2014
Zusatzinfo colour illustrations
Verlagsort Sebastopol
Sprache englisch
Maße 101 x 227 mm
Gewicht 110 g
Einbandart kartoniert
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Maschinelles Lernen
ISBN-10 1-4919-1160-3 / 1491911603
ISBN-13 978-1-4919-1160-0 / 9781491911600
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85