Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Mathematical Tools for Data Mining - Dan A. Simovici, Chabane Djeraba

Mathematical Tools for Data Mining

Set Theory, Partial Orders, Combinatorics
Buch | Hardcover
831 Seiten
2014 | 2nd ed. 2014
Springer London Ltd (Verlag)
978-1-4471-6406-7 (ISBN)
CHF 269,60 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc.
Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. Topics include partially ordered sets, combinatorics, general topology, metric spaces, linear spaces, graph theory. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc. The book is intended as a reference for researchers and graduate students. The current edition is a significant expansion of the first edition. We strived to make the book self-contained and only a general knowledge of mathematics is required. More than 700 exercises are included and they form an integral part of the material. Many exercises are in reality supplemental material and their solutions are included.

Sets, Relations and Functions.- Partially Ordered Sets.- Combinatorics.- Topologies and Measures.- Linear Spaces.- Norms and Inner Products.- Spectral Properties of Matrices.- Metric Spaces Topologies and Measures.- Convex Sets and Convex Functions.- Graphs and Matrices.- Lattices and Boolean Algebras.- Applications to Databases and Data Mining.- Frequent Item Sets and Association Rules.- Special Metrics.- Dimensions of Metric Spaces.- Clustering.

Reihe/Serie Advanced Information and Knowledge Processing
Zusatzinfo 93 Illustrations, black and white; XI, 831 p. 93 illus.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 1-4471-6406-7 / 1447164067
ISBN-13 978-1-4471-6406-7 / 9781447164067
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Wolfram Langer

Buch | Hardcover (2023)
Rheinwerk (Verlag)
CHF 69,85
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85