Mathematical Tools for Data Mining
Set Theory, Partial Orders, Combinatorics
Seiten
2014
|
2nd ed. 2014
Springer London Ltd (Verlag)
978-1-4471-6406-7 (ISBN)
Springer London Ltd (Verlag)
978-1-4471-6406-7 (ISBN)
Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc.
Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. Topics include partially ordered sets, combinatorics, general topology, metric spaces, linear spaces, graph theory. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc. The book is intended as a reference for researchers and graduate students. The current edition is a significant expansion of the first edition. We strived to make the book self-contained and only a general knowledge of mathematics is required. More than 700 exercises are included and they form an integral part of the material. Many exercises are in reality supplemental material and their solutions are included.
Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. Topics include partially ordered sets, combinatorics, general topology, metric spaces, linear spaces, graph theory. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc. The book is intended as a reference for researchers and graduate students. The current edition is a significant expansion of the first edition. We strived to make the book self-contained and only a general knowledge of mathematics is required. More than 700 exercises are included and they form an integral part of the material. Many exercises are in reality supplemental material and their solutions are included.
Sets, Relations and Functions.- Partially Ordered Sets.- Combinatorics.- Topologies and Measures.- Linear Spaces.- Norms and Inner Products.- Spectral Properties of Matrices.- Metric Spaces Topologies and Measures.- Convex Sets and Convex Functions.- Graphs and Matrices.- Lattices and Boolean Algebras.- Applications to Databases and Data Mining.- Frequent Item Sets and Association Rules.- Special Metrics.- Dimensions of Metric Spaces.- Clustering.
Reihe/Serie | Advanced Information and Knowledge Processing |
---|---|
Zusatzinfo | 93 Illustrations, black and white; XI, 831 p. 93 illus. |
Verlagsort | England |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
ISBN-10 | 1-4471-6406-7 / 1447164067 |
ISBN-13 | 978-1-4471-6406-7 / 9781447164067 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85
Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 76,85