Convex Analysis and Variational Problems
Society for Industrial & Applied Mathematics,U.S. (Verlag)
9780898714500 (ISBN)
Preface to the Classics Edition
Preface
Part One: Fundamentals of Convex Analysis. Chapter I: Convex Functions
Chapter II: Minimization of Convex Functions and Variational Inequalities
Chapter III: Duality in Convex Optimization
Part Two: Duality and Convex Variational Problems. Chapter IV: Applications of Duality to the Calculus of Variations (I)
Chapter V: Applications of Duality to the Calculus of Variations (II)
Chapter VI: Duality by the Minimax Theorem
Chapter VII: Other Applications of Duality
Part Three: Relaxation and Non-Convex Variational Problems. Chapter VIII: Existence of Solutions for Variational Problems
Chapter IX: Relaxation of Non-Convex Variational Problems (I)
Chapter X: Relaxation of Non-Convex Variational Problems (II)
Appendix I: An a priori Estimate in Non-Convex Programming
Appendix II: Non-Convex Optimization Problems Depending on a Parameter
Comments
Bibliography
Index.
| Erscheint lt. Verlag | 30.11.1999 |
|---|---|
| Reihe/Serie | Classics in Applied Mathematics |
| Verlagsort | New York |
| Sprache | englisch |
| Maße | 152 x 229 mm |
| Gewicht | 560 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
| ISBN-13 | 9780898714500 / 9780898714500 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich